Reaction Dynamics Study of the Molecular Hydrogen Loss Channel in the Elementary Reactions of Ground-State Silicon Atoms (Si(3P)) With 1- and 2-Methyl-1,3-Butadiene (C5H8)

Author(s):  
Zhenghai Yang ◽  
Chao He ◽  
Shane Goettl ◽  
Ralf I. Kaiser
2020 ◽  
Vol 13 ◽  
pp. 203
Author(s):  
T. Gaitanos ◽  
M. Colonna ◽  
M. Di Toro ◽  
H. H. Wolter

We present several possibilities offered by the dynamics of intermediate energy heavy ion collisions to investigate the nuclear matter equation of state (EoS) beyond the ground state. In particular the relation between the reaction dynamics and the high density nuclear EoS is discussed by comparing theoretical results with experiments.


1959 ◽  
Vol 37 (5) ◽  
pp. 636-659 ◽  
Author(s):  
G. Herzberg ◽  
L. L. Howe

The Lyman bands of H2 have been investigated under high resolution with a view to improving the rotational and vibrational constants of H2 in its ground state. Precise Bv and ΔG values have been obtained for all vibrational levels of the ground state. One or two of the highest rotational levels of the last vibrational level (v = 14) lie above the dissociation limit. Both the [Formula: see text] and ΔG″ curves have a point of inflection at about v″ = 3. This makes it difficult to represent the whole course of each of these curves by a single formula and therefore makes the resulting equilibrium constants somewhat uncertain. This uncertainty is not very great for the rotational constants for which we find[Formula: see text]but is considerable for the vibrational constants ωe and ωexe for which three-, four-, five-, and six-term formulae give results diverging by ± 1 cm−1. The rotational and vibrational constants for the upper state [Formula: see text] of the Lyman bands are also determined. An appreciable correction to the position of the upper state is found.


2019 ◽  
pp. 323-358
Author(s):  
P.J.E. Peebles

This chapter assesses some applications drawn from atomic and molecular structure. It deals with the structures of the lighter atoms and the simplest molecule, molecular hydrogen. The main approximation method used here is the energy variational principle, which is a powerful technique for computing the low-lying energies of a system such as an atom or molecule. The chapter then introduces the Pauli exclusion principle, which governs the symmetry of the state vector for a system of identical particles such as electrons. Two general features of the exclusion principle are worth noting. First, although the spins make only a very weak contribution to the Hamiltonians for helium, the lowest energy state with spin one is above the spin zero ground state, which is a considerable difference. Second, an electron arriving as a cosmic ray particle from a distant galaxy has to have a wave function antisymmetric with respect to the local electrons, even though the new electron has been away from us for a long time.


Author(s):  
Delu Gao ◽  
Dunyou Wang

The reaction probabilities, integral cross sections, energy efficiency and rate constants are investigated for the F + C2H6 reaction with a quantum reaction dynamics, wave-packet method. The ground-state integer cross...


Sign in / Sign up

Export Citation Format

Share Document