scholarly journals Liquid Structure of a Water-in-Salt Electrolyte with a Remarkably Asymmetric Anion

Author(s):  
Alessandro Triolo ◽  
Valerio Di Lisio ◽  
Fabrizio Lo Celso ◽  
Giovanni B. Appetecchi ◽  
Barbara Fazio ◽  
...  
Keyword(s):  
Author(s):  
D Rohini ◽  
R Abinaya ◽  
D Lokesharun ◽  
K Karthik ◽  
V Sovishnuchringth ◽  
...  

Author(s):  
Erlend L. Bjørnstad ◽  
Gabriella Tranell

AbstractOxidative ladle refining (OLR) is the most used refining method in industrial production of metallurgical grade silicon. OLR is performed by purging the liquid alloy with oxygen-enhanced air at 1823 K to 1873 K, reacting with silicon and the primary slag forming impurities to a SiO$$_{2}$$ 2 -CaO-Al$$_{2}$$ 2 O$$_{3}$$ 3 slag. To further increase our capability to control this process, it is paramount to understand how the slag nucleates and forms, and represent it such that it is useful for predicting and controlling the process behavior. This work aims to formulate a comprehensive theoretical description of slag nucleation and formation at nano/microscale using classical macroscale thermodynamics, bridging these spatial regimes. To achieve this, the work argues that silica’s liquid structure allows its nuclei to exhibit “well defined” surfaces. Furthermore, silica is predicted to be highly surface active, so if its concentration is high while the slag nucleus is small, the SiO$$_{2}$$ 2 -CaO-Al$$_{2}$$ 2 O$$_{3}$$ 3 slag should retain silica’s surface properties. An experiment confirmed the surface active nature of silica in the SiO$$_{2}$$ 2 -CaO-Al$$_{2}$$ 2 O$$_{3}$$ 3 system. It was also shown that increasing the slag’s calcia concentration has a greater effect on the interfacial tension between the molten slag and liquid alloy than alumina, confirming industrial observations of the coupling between refining rate and relative alloy/slag composition.


1998 ◽  
Vol 31 (20) ◽  
pp. 6991-6997 ◽  
Author(s):  
Janna K. Maranas ◽  
Maurizio Mondello ◽  
Gary S. Grest ◽  
Sanat K. Kumar ◽  
Pablo G. Debenedetti ◽  
...  

2012 ◽  
Vol 116 (45) ◽  
pp. 13448-13458 ◽  
Author(s):  
Marina Macchiagodena ◽  
Fabio Ramondo ◽  
Alessandro Triolo ◽  
Lorenzo Gontrani ◽  
Ruggero Caminiti

2007 ◽  
Vol 111 (31) ◽  
pp. 9270-9280 ◽  
Author(s):  
Toshiyuki Takamuku ◽  
Yasuhiro Kyoshoin ◽  
Hiroshi Noguchi ◽  
Shoji Kusano ◽  
Toshio Yamaguchi

2000 ◽  
Vol 112 (17) ◽  
pp. 7505-7517 ◽  
Author(s):  
R. Rey ◽  
L. C. Pardo ◽  
E. Llanta ◽  
K. Ando ◽  
D. O. López ◽  
...  

2018 ◽  
Vol 8 (10) ◽  
pp. 1874 ◽  
Author(s):  
Jie Wu ◽  
Jia Wang ◽  
Haiou Ni ◽  
Guimin Lu ◽  
Jianguo Yu

Molten chloride salts are the main components in liquid metal batteries, high-temperature heat storage materials, heat transfer mediums, and metal electrolytes. In this paper, interest is centered on the influence of the LiCl component and temperature on the local structure and transport properties of the molten LiCl-NaCl-KCl system over the temperature range of 900 K to 1200 K. The liquid structure and properties have been studied across the full composition range by molecular dynamics (MD) simulation of a sufficient length to collect reliable values, such as the partial radial distribution function, angular distribution functions, coordination numbers distribution, density, self-diffusion coefficient, ionic conductivity, and shear viscosity. Densities obtained from simulations were underestimated by an average 5.7% of the experimental values. Shear viscosities and ionic conductivity were in good agreement with the experimental data. The association of all ion pairs (except for Li-Li and Cl-Cl) was weakened by an increasing LiCl concentration. Ion clusters were formed in liquids with increasing temperatures. The self-diffusion coefficients and ionic conductivity showed positive dependences on both LiCl concentration and temperature, however, the shear viscosity was the opposite. By analyzing the hydrodynamic radii of each ion and the coordination stability of cation-anion pairs, it was speculated that ion clusters could be the cation-anion coordinated structure and affected the macro properties.


Sign in / Sign up

Export Citation Format

Share Document