Assessing the Quality of Solvents and Dispersants for Low-Dimensional Materials Using the Corresponding Distances Method

2016 ◽  
Vol 120 (44) ◽  
pp. 11607-11617 ◽  
Author(s):  
A. Hardy ◽  
H. Bock
Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1201
Author(s):  
Fedor Pavlovich Meshchaninov ◽  
Dmitry Alexeevich Zhevnenko ◽  
Vladislav Sergeevich Kozhevnikov ◽  
Evgeniy Sergeevich Shamin ◽  
Oleg Alexandrovich Telminov ◽  
...  

The use of low-dimensional materials is a promising approach to improve the key characteristics of memristors. The development process includes modeling, but the question of the most common compact model applicability to the modeling of device characteristics with the inclusion of low-dimensional materials remains open. In this paper, a comparative analysis of linear and nonlinear drift as well as threshold models was conducted. For this purpose, the assumption of the relationship between the results of the optimization of the volt–ampere characteristic loop and the descriptive ability of the model was used. A global random search algorithm was used to solve the optimization problem, and an error function with the inclusion of a regularizer was developed to estimate the loop features. Based on the characteristic features derived through meta-analysis, synthetic volt–ampere characteristic contours were built and the results of their approximation by different models were compared. For every model, the quality of the threshold voltage estimation was evaluated, the forms of the memristor potential functions and dynamic attractors associated with experimental contours on graphene oxide were calculated.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1535
Author(s):  
Shiu-Ming Huang ◽  
Jai-Lung Hung ◽  
Mitch Chou ◽  
Chi-Yang Chen ◽  
Fang-Chen Liu ◽  
...  

Broadband photosensors have been widely studied in various kinds of materials. Experimental results have revealed strong wavelength-dependent photoresponses in all previous reports. This limits the potential application of broadband photosensors. Therefore, finding a wavelength-insensitive photosensor is imperative in this application. Photocurrent measurements were performed in Sb2Te3 flakes at various wavelengths ranging from visible to near IR light. The measured photocurrent change was insensitive to wavelengths from 300 to 1000 nm. The observed wavelength response deviation was lower than that in all previous reports. Our results show that the corresponding energies of these photocurrent peaks are consistent with the energy difference of the density of state peaks between conduction and valence bands. This suggests that the observed photocurrent originates from these band structure peak transitions under light illumination. Contrary to the most common explanation that observed broadband photocurrent carrier is mainly from the surface state in low-dimensional materials, our experimental result suggests that bulk state band structure is the main source of the observed photocurrent and dominates the broadband photocurrent.


2019 ◽  
Vol 3 (3) ◽  
Author(s):  
Peter Mahler Larsen ◽  
Mohnish Pandey ◽  
Mikkel Strange ◽  
Karsten Wedel Jacobsen

Nanoscale ◽  
2021 ◽  
Author(s):  
Ivan Marri ◽  
Stefano Ossicini

An important challenge in the field of renewable energy is the development of novel nanostructured solar cell devices which implement low-dimensional materials to overcome the limits of traditional photovoltaic systems....


Nanoscale ◽  
2021 ◽  
Author(s):  
Z.Q. Zheng ◽  
Yuchen Zhou ◽  
Wei Gao ◽  
Li Zhang ◽  
Mengmeng Yang ◽  
...  

Heterojunctions based on low-dimensional materials can combine the superiorities of each composition and realize novel properties. Herein, a mixed-dimensional heterojunction comprising multilayer WS2, CdS microwire and few-layer WS2 has been...


Author(s):  
Radha Somaiya ◽  
Deobrat Singh ◽  
Yogesh Kumar Sonvane ◽  
Sanjeev Kumar Gupta ◽  
Rajeev Ahuja

Low dimensional materials possess a challenge to identify a photocatalyst suitable for photocatalytic water splitting application. We have systematically investigated that SiN, SiP, and SiAs homo-bilayers are efficient for water...


Sign in / Sign up

Export Citation Format

Share Document