Nitrogen Activation on Defective Potassium Chloride and Sodium Chloride

Author(s):  
Michael Häfner ◽  
Thomas Bredow
1981 ◽  
Vol 46 (12) ◽  
pp. 3104-3109 ◽  
Author(s):  
Miroslav Ludwig ◽  
Oldřich Pytela ◽  
Miroslav Večeřa

Rate constants of non-catalyzed hydrolysis of 3-acetyl-1,3-diphenyltriazene (I) and 3-(N-methylcarbamoyl)-1,3-diphenyltriazene (II) have been measured in the presence of salts (ammonium chloride, potassium chloride, lithium chloride, sodium chloride and bromide, ammonium sulphate, potassium sulphate, lithium sulphate, sodium sulphate and zinc sulphate) within broad concentration ranges. Temperature dependence of the hydrolysis of the substrates studied has been measured in the presence of lithium sulphate within temperature range 20° to 55 °C. The results obtained have been interpreted by mechanisms of hydrolysis of the studied substances.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


1958 ◽  
Vol 36 (11) ◽  
pp. 1511-1517 ◽  
Author(s):  
A. N. Campbell ◽  
E. M. Kartzmark ◽  
E. G. Lovering

In the reciprocal salt pair Li2, K2, Cl2, SO4, and water, at 25 °C there are large areas in which potassium sulphate and potassium lithium sulphate (KLiSO4) are separately in equilibrium with solution. Two incongruent invariant points exist. At one of these the composition of the solution is 0.917 mole fraction chloride, 0.437 mole fraction lithium, and 19.4 moles of water per total mole of salt, the equilibrium solid phases being potassium chloride, potassium sulphate, and the double salt. At the second, the composition of the solution is 0.967 mole fraction chloride, 0.870 mole fraction lithium, and 13.8 moles of water per mole of salt, the solid phases being potassium chloride, double salt, and lithium sulphate monohydrate. One congruent invariant point exists, at which the composition of the solution is 1.00 mole fraction chloride, 0.960 mole fraction lithium, and 9.6 moles of water per mole of salt, the solid phases being lithium sulphate monohydrate, lithium chloride monohydrate, and potassium chloride.In the reciprocal salt pair Li2, Na2, Cl2, SO4, and water, at 25 °C there is an incongruent invariant point at which the composition of the solution is 0.873 mole fraction chloride, 0.668 mole fraction lithium, and 15.1 moles water per total mole of salt, the solid phases being sodium chloride, solid solution of sodium and lithium sulphates, and lithium sulphate monohydrate. A congruent invariant point exists, at which the composition of the solution is practically entirely lithium chloride, the solid phases present being lithium chloride monohydrate, lithium sulphate monohydrate, and sodium chloride.


2015 ◽  
Vol 1119 ◽  
pp. 334-337
Author(s):  
Xu Ling Wei ◽  
Yu Li Wei ◽  
Guang Bi Gong ◽  
Tao Liang ◽  
Wen Jing Cai ◽  
...  

Powdered polychloroprene rubber (PCR-244) was prepared by the direct condensation, and the influence of agglomerator kinds and dosages on powdering of PCR-244 were investigated, including trivalent salt (aluminum chloride), divalent salt (magnesium sulfate, calcium chloride) and monovalent salt (sodium chloride, potassium chloride). The result showed that powder chloroprene rubber could be used as adhesive material that calcium chloride was used as agglomerator.


Sign in / Sign up

Export Citation Format

Share Document