Preferential Direction of Electron Transfers at a Dye–Metal Oxide Interface with an Insulating Fluorinated Self-Assembled Monolayer and MgO

Author(s):  
Leigh Anna Hunt ◽  
Roberta R. Rodrigues ◽  
Kayla Foell ◽  
Dinesh Nugegoda ◽  
Hammad Cheema ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2998 ◽  
Author(s):  
Shanshan Li ◽  
Qingying Luo ◽  
Zhiqing Zhang ◽  
Guanghui Shen ◽  
Hejun Wu ◽  
...  

We investigated the permselectivity and interfacial electron transfers of an amphiphilic branch-tailed fluorosurfactant self-assembled monolayer (FS-SAM) on a gold electrode by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The FS-SAM was prepared by a self-assembly technique and a “click” reaction. The barrier property and interfacial electron transfers of the FS-SAM were also evaluated using various probes with different features. The FS-SAM allowed a higher degree of permeation by small hydrophilic (Cl− and F−) electrolyte ions than large hydrophobic (ClO4− and PF6−) ones. Meanwhile, the redox reaction of the Fe(CN)63− couple was nearly completely blocked by the FS-SAM, whereas the electron transfer of Ru(NH3)63+ was easier than that of Fe(CN)63−, which may be due to the underlying tunneling mechanism. For hydrophobic dopamine, the hydrophobic bonding between the FS-SAM exterior fluoroalkyl moieties and the hydrophobic probes, as well as the hydration resistance from the interior hydration shell around the oligo (ethylene glycol) moieties, hindered the transport of hydrophobic probes into the FS-SAM. These results may have profound implications for understanding the permselectivity and electron transfers of amphiphilic surfaces consisting of molecules containing aromatic groups and branch-tailed fluorosurfactants in their structures.


2011 ◽  
Vol 23 (16) ◽  
pp. 1899-1902 ◽  
Author(s):  
Orb Acton ◽  
Daniel Hutchins ◽  
Líney Árnadóttir ◽  
Tobias Weidner ◽  
Nathan Cernetic ◽  
...  

ACS Sensors ◽  
2019 ◽  
Vol 4 (5) ◽  
pp. 1279-1290 ◽  
Author(s):  
Jiansong Miao ◽  
Chuan Chen ◽  
Lie Meng ◽  
Y.S. Lin

2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


Sign in / Sign up

Export Citation Format

Share Document