tunneling mechanism
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 2)

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 91
Author(s):  
Chris Rourk

A newly discovered physical mechanism involving incoherent electron tunneling in layers of the protein ferritin that are found in catecholaminergic neurons (catecholaminergic neuron electron transport or CNET) is hypothesized to support communication between neurons. Recent tests further confirm that these ferritin layers can also perform a switching function (in addition to providing an electron tunneling mechanism) that could be associated with action selection in those neurons, consistent with earlier predictions based on CNET. While further testing would be needed to confirm the hypothesis that CNET allows groups of neurons to communicate and act as a switch for selecting one of the neurons in the group to assist in reaching action potential, this paper explains how that hypothesized behavior would be consistent with Integrated Information Theory (IIT), one of a number of consciousness theories (CTs). While the sheer number of CTs suggest that any one of them alone is not sufficient to explain consciousness, this paper demonstrates that CNET can provide a physical substrate and action selection mechanism that is consistent with IIT and which can also be applied to other CTs, such as to conform them into a single explanation of consciousness.


Author(s):  
М.Ю. Штерн ◽  
И.С. Караваев ◽  
М.С. Рогачев ◽  
Ю.И. Штерн ◽  
Б.Р. Мустафоев ◽  
...  

The electrical contact resistance significantly affects the efficiency of thermoelements. In the case of high doped thermoelectric materials, the tunneling mechanism of conductivity prevails at metal-semiconductor interface, which makes it possible to obtain a contact resistance of less than 10-8 Ohm•m2. Low resistance values significantly complicate its experimental determination. Work present three techniques and a measuring stand for the investigation of contact resistance. The techniques are based on the measurement of the total electrical resistance, which consists of transient contact resistance and the resistance of the thermoelectric material with its subsequent exclusion. The developed techniques differ in the arrangement of the investigated contacts on the samples, in the methods of measurement and processing of the obtained results, and make it possible to determine the specific contact resistance of the order of 10-10 Ohm•m2.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Chen Yu-Zhu ◽  
Chen Yu-Jie ◽  
Li Shi-Lin ◽  
Zhang Fu-Lin ◽  
Dai Wu-Sheng

AbstractIn this paper, we construct toy models of the black hole and the white hole by setting proper boundaries in the Minkowski spacetime, according to the modern definition. We calculate the thermal effect of the black hole with the tunneling mechanism. We consider the role of boundary conditions at the singularity and on the horizon. In addition, we show that the white hole possesses a thermal absorption.


Author(s):  
Preeti Sharma ◽  
Jaya Madan ◽  
Rahul Pandey ◽  
Rajnish Sharma

Abstract Electrostatically-doped TFETs (ED-TFETs) are amongst the most widely used cost-efficient steeper devices due to the use of charge-plasma technique and tunneling mechanism. However, the reliability analysis of ED-TFETs has considered as an important concern for the research community. Also, most studies have only focused on improving the performance of ED-TFETs such as dopingless (DL)-TFET in terms of on-current (ION), subthreshold swing (SS) and threshold voltage (Vth) rather than investigating the reliability issues. In this context, the aim of our work is to investigate the reliability analysis of our previously reported methyl-ammonium lead tri-iodide materials based DL-TFET (MAPbI3-DL-TFET). The influence of interface trap charges, shallow and deep defects on the electrical and analog performance of MAPbI3-DL-TFET has been analyzed using Silvaco ATLAS tool at room temperature. Extensive results carried out show that deep-level (Gaussian) defects impact the performance of the device prominently while the tail defects affect the device performance insignificantly. The present findings showed that the donor/acceptor effect the device in subthreshold regime considerably, while in superthreshold regime the impact of trap charges is marginal. In our view, these result emphasizes the reliability analysis of MAPbI3-DL-TFET for the very first time. We hope that our research will be useful and valuable for DL-TFET manufacturers.


Author(s):  
Christopher John Rourk

A newly-discovered physical mechanism involving electron tunneling in layers of the protein ferritin that are found in catecholaminergic neurons (catecholaminergic neuron electron transport or CNET), is hypothesized to support communication between neurons. Recent tests further confirm that these ferritin layers can also perform a switching function (in addition to providing an electron tunneling mechanism) that could be associated with action selection in those neurons, consistent with earlier predictions based on CNET. While further testing would be needed to confirm the hypothesis that CNET allows groups of neurons to communicate and act as a switch for selecting one of the neurons in the group to assist in reaching action potential, this paper explains how that hypothesized behavior would be consistent with Integrated Information Theory (IIT), one of a number of consciousness theories (CTs). While the sheer number of CTs suggest that any one of them is not sufficient to explain consciousness, this paper demonstrates that CNET can provide a physical substrate that is consistent with IIT and which can also be applied to other CTs, such as to conform them into a single explanation of consciousness.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Shintaro Takayoshi ◽  
Jianda Wu ◽  
Takashi Oka

We study the tunneling mechanism of nonlinear optical processes in solids induced by strong coherent laser fields. The theory is based on an extension of the Landau-Zener model with nonadiabatic geometric effects. In addition to the rectification effect known previously, we find two effects, namely perfect tunneling and counterdiabaticity at fast sweep speed. We apply this theory to the twisted Schwinger effect, i.e., nonadiabatic pair production of particles by rotating electric fields, and find a nonperturbative generation mechanism of the opto-valley polarization and photo-current in Dirac and Weyl fermions.


2021 ◽  
Author(s):  
Eric R. Heller ◽  
Jeremy O. Richardson

The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T1 → S0 transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory. Our first-principles approach provides excellent agreement with the experimental rates. This was only possible due to the fact that instanton theory goes beyond previous methods by locating the optimal tunneling pathway in full dimensionality and thus captures "corner cutting" effects. Since the reaction is situated in the Marcus inverted regime, the tunneling mechanism can be interpreted in terms of two classical trajectories, one traveling forwards and one backwards in imaginary time, which are connected by particle--antiparticle creation and annihilation events. The calculated mechanism indicates that the spin crossover is sped up by many orders of magnitude due to multidimensional quantum tunneling of the carbon atom even at room temperature.


Author(s):  
Sarbjeet Kaur ◽  
BirBikram Singh ◽  
S. K. Patra

The purpose of the present work is to investigate the alpha (α) emission as competing mode of one proton emission using the preformed cluster decay model (PCM). PCM is based on the quantummechanical tunneling mechanism of penetration of the preformed fragments through a potential barrier, calculated within WKB approximation. To explore the competing aspects of α and one proton radioactivity, we have chosen emitters present immediately above and below the Z = 82 shell closure i.e. 177Tl and 185Bi by taking into account the effects of deformations (β2) and orientations of outgoing nuclei. The minimized values of fragmentation potential and maximized values of preformation probability (P0) for proton and alpha fragment demonstrated the crucial role played by even Z - even N daughter and shell closure effect of Z = 82 daughter, in 177Tl and 185Bi, respectively. The higher values of P0 of the one proton further reveal significance of nuclear structure in the proton radioactivity. From the comparison of proton and α decay, we see that the former is heavily dominating with larger values of P0 in comparison to the later. Theoretically calculated half-lives of one proton and α emission for spherical and deformed considerations have also been compared with available experimental data.


2021 ◽  
Author(s):  
Mukesh Kumar Bind ◽  
Kaushal Nigam

Abstract The electrostatic doping technique has the ability to reduce random dopant fluctuations (RDFs), fabrication complexity and high thermal budget requirement in the fabrication process of nano-scale devices. In this paper, first time propose and simulate a Junction Free Electrostatically Doped Tunnel Field-Effect Transistor (JFED- TFET) based biosensor for label-free biosensing applications. The gate dielectric modulation concept used for sensing the existence of biomolecules inside the nano-cavity, created in gate dielectric material towards the tunneling junction to modulate the tunneling mechanism. The sensitivity of JF-ED-TFET biosensor investigate with various types of biomolecules based on dielectric constants (k) and charge densities (ρ). The sensing response of the JF-ED-TFET biosensor analyze in terms of electric field, energy band and transfer characteristic and the sensitivity in terms of ION, ION/IOFF ratio and Subtheshold Swing. The sensitivity of device investigated based on practical challenges as different filling factor and step-profile generated from the steric hinderance. The effect of temperate and nano-cavity dimensions variation on device performance also has been analyzed. In this work, various types of biomolecules as Streptavidin (k = 2.1), Ferro-cytochrome c (k = 4.7), keratin (k = 8) and Gelatin (k = 12) has been considered for the performance investigation.


Sign in / Sign up

Export Citation Format

Share Document