Molecular Dynamics Simulations of the Interfacial Region between Boehmite and Gibbsite Basal Surfaces and High Ionic Strength Aqueous Solutions

2017 ◽  
Vol 121 (25) ◽  
pp. 13692-13700 ◽  
Author(s):  
Zhizhang Shen ◽  
Eugene S. Ilton ◽  
Micah P. Prange ◽  
Sebastien N. Kerisit
2011 ◽  
Vol 10 (03) ◽  
pp. 359-370 ◽  
Author(s):  
JUAN PANG ◽  
HU YANG ◽  
JING MA ◽  
RONGSHI CHENG

Poly(N-alkylacrylamide) is a group of thermo-sensitive polymers that include poly (N-isopropylacrylamide), poly(N-n-propylacrylamide), poly(N-isopropylmethacryl-amide), and so on. The polymers exhibit different levels of lower critical solution temperatures (LCST) in aqueous solutions. In this article, their monomers and oligomers with 10 repeating units are selected, respectively, to demonstrate the cause of different LCST levels of the polymers in aqueous solutions using molecular dynamics simulations and quantum mechanics calculations. The monomers have functional groups of different steric volume that greatly affect the conformational transition of chains and LCST levels of the polymers. A branched chain of N-propyl group in N-isopropylacrylamide and an additional methyl group at α-carbon in N-isopropylmethacrylamide both increase the steric effect, making it more difficult for monomers to draw closer and resulting in higher LCST levels of the polymers. In addition, the simulated results from their corresponding oligomers exhibit the similar trend to those from the monomers.


2016 ◽  
Vol 144 (15) ◽  
pp. 154704 ◽  
Author(s):  
Giorgia Olivieri ◽  
Krista M. Parry ◽  
Cedric J. Powell ◽  
Douglas J. Tobias ◽  
Matthew A. Brown

1998 ◽  
Vol 543 ◽  
Author(s):  
Edmund B. Webb ◽  
Gary S. Grest

AbstractThe interface between liquid hexadecane and the (010) surface of silicalite was studied by molecular dynamics. The structure of molecules in the interfacial region is influenced by the presence of pore mouths on the silicalite surface. For this surface, whose pores are the entrances to straight channels, the concentration profile for partially absorbed molecules is peaked around 10 monomers inside the zeolite. No preference to enter or exit the zeolite based on absorption length is observed except for very small or very large absorption lengths. We also found no preferential conformation of the unabsorbed tails for partially absorbed molecules.


2018 ◽  
Vol 32 (8) ◽  
pp. 8090-8097 ◽  
Author(s):  
Xiaoyu Sun ◽  
Cuiying Jian ◽  
Yingkai He ◽  
Hongbo Zeng ◽  
Tian Tang

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastian Franco-Ulloa ◽  
Giuseppina Tatulli ◽  
Sigbjørn Løland Bore ◽  
Mauro Moglianetti ◽  
Pier Paolo Pompa ◽  
...  

Abstract The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.


Sign in / Sign up

Export Citation Format

Share Document