concentration profile
Recently Published Documents


TOTAL DOCUMENTS

695
(FIVE YEARS 74)

H-INDEX

42
(FIVE YEARS 4)

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Muhammad Shoaib ◽  
Ghania Zubair ◽  
Muhammad Asif Zahoor Raja ◽  
Kottakkaran Sooppy Nisar ◽  
Abdel-Haleem Abdel-Aty ◽  
...  

In this article, we examine the three-dimensional Prandtl nanofluid flow model (TD-PNFM) by utilizing the technique of Levenberg Marquardt with backpropagated artificial neural network (TLM-BANN). The flow is generated by stretched sheet. The electro conductive Prandtl nanofluid is taken through magnetic field. The PDEs representing the TD-PNFM are converted to system of ordinary differential equations, then the obtained ODEs are solved through Adam numerical solver to compute the reference dataset with the variations of Prandtl fluid number, flexible number, ratio parameter, Prandtl number, Biot number and thermophoresis number. The correctness and the validation of the proposed TD-PNFM are examined by training, testing and validation process of TLM-BANN. Regression analysis, error histogram and results of mean square error (MSE), validates the performance analysis of designed TLM-BANN. The performance is ranges 10−10, 10−10, 10−10, 10−11, 10−10 and 10−10 with epochs 204, 192, 143, 20, 183 and 176, as depicted through mean square error. Temperature profile decreases whenever there is an increase in Prandtl fluid number, flexible number, ratio parameter and Prandtl number, but temperature profile shows an increasing behavior with the increase in Biot number and thermophoresis number. The absolute error values by varying the parameters for temperature profile are 10−8 to 10−3, 10−8 to 10−3, 10−7 to 10−3, 10−7 to 10−3, 10−7 to 10−4 and 10−8 to 10−3. Similarly, the increase in Prandtl fluid number, flexible number and ratio parameter leads to a decrease in the concentration profile, whereas the increase in thermophoresis parameter increases the concentration distribution. The absolute error values by varying the parameters for concentration profile are 10−8 to 10−3, 10−7 to 10−3, 10−7 to 10−3 and 10−8 to 10−3. Velocity distribution shows an increasing trend for the upsurge in the values of Prandtl fluid parameter and flexible parameter. Skin friction coefficient declines for the increase in Hartmann number and ratio parameter Nusselt number falls for the rising values of thermophoresis parameter against Nb.


2021 ◽  
Vol 10 (4) ◽  
pp. 491-505
Author(s):  
Gopinath Mandal ◽  
Dulal Pal

The purpose of this article is to analyze the entropy generation and heat and mass transfer of carbon nano-tubes (CNTs) nanofluid by considering the applied magnetic field under the influence of thermal radiation, variable thermal conductivity, variable mass diffusivity, and binary chemical reaction with activation energy over a linearly stretching cylinder. Convective boundary conditions on heat and mass transfer are considered. An isothermal model of homogeneous-heterogeneous reactions is used to regulate the solute concentration profile. It is assumed that the water-based nanofluid is composed of single and multi-walled carbon nanotubes. Employing a suitable set of similarity transformations, the system of partial differential equations is transformed into the system of nonlinear ordinary differential equations before being solved numerically. Through the implementation of the second law of thermodynamics, the total entropy generation is calculated. In addition, entropy generation for fluid friction, mass transfer, and heat transfer is discussed. This study is specially investigated for the impact of the chemical reaction, and activation energy with entropy generation subject to distinct flow parameters. It is found that the slip parameters greatly influence the flow characteristics. Fluid temperature is elevated with higher radiation parameters and thermal Biot number. Entropy and Bejan number are found to be an increasing function of solid volume fraction, magnetic field, and curvature parameters. Binary chemical reaction and activation energy on concentration profile have opposite effects.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6385
Author(s):  
Roman G. Szafran ◽  
Benita Wiatrak

In this study, we thoroughly analyzed molecular gradient generation, its stability over time, and linearity in our high-throughput drug screening microfluidic assay (HTS). These parameters greatly affect the precision and accuracy of the device’s analytical protocol. As part of the research, we developed a mathematical model of dependence of the concentration profile on the initial concentrations of active substances in reservoirs and the number of tilts, as well as the dependence of the active substance concentration profiles in the culture chambers on the concentration profile of the reference dye in the indicator chamber. The mean concentration prediction error of the proposed equations ranged from 1.4% to 2.4% for the optimized parameters of the procedure and did not increase with the incubation time. The concentration profile linearity index, Pearson’s correlation coefficient reached −0.997 for 25 device tilts. The observed time stability of the profiles was very good. The mean difference between the concentration profile after 5 days of incubation and the baseline profile was only 7.0%. The newly created mathematical relationships became part of the new HTS biochip operating protocols, which are detailed in the article.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6800
Author(s):  
Jizhou Hu ◽  
Hemi Qu ◽  
Wei Pang ◽  
Xuexin Duan

A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mark Wareing ◽  
Craig P. Smith

The aim of this study was to determine the iron (Fe) concentration profile within the lumen of the S2 renal proximal convoluted tubule (PCT) and to resolve whether this nephron segment transported Fe. To do this, we performed in vivo renal micropuncture on Wistar rats, collected PCT tubular fluid from superficial nephrons, and measured Fe concentration. The Fe concentration profile along the S2 PCT suggested significant Fe reabsorption. Proximal tubules were also microperfused in vivo with physiological solutions containing Fe and Zn, Cu, Mn, or Cd. PCTs perfused with 12μmol.l−1 55FeCl3 reabsorbed 105.2±12.7 fmol.mm−1.min−1 Fe, 435±52pmol.mm-1.min−1 Na, and 2.7±0.2nl.mm−1.min−1 water (mean ± SEM; n=19). Addition of ascorbate (1mmol.l−1) to the perfusate did not significantly alter Fe, Na, or water reabsorption. Supplementing the control perfusate with 60μmol.l−1 FeSO4 significantly decreased 55Fe uptake. Recalculating for the altered molar activity following addition of unlabeled Fe revealed a three-fold increase in Fe flux. Addition to the perfusate 12μmol.l−1 CuSO4, MnSO4, CdSO4, or ZnSO4 did not affect Fe, Na, or water flux. In conclusion, (1) in vivo, S2 PCTs of rat reabsorb Fe and (2) Fe is reabsorbed along the PCT via a pathway that is insensitive to Cu, Mn, Cd, or Zn. Together, these data demonstrate for the first time the hitherto speculated process of renal Fe filtration and subsequent tubular Fe reabsorption in a living mammal.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
Ales Groselj ◽  
Masa Bosnjak ◽  
Mojca Krzan ◽  
Tina Kosjek ◽  
Kriszta Bottyán ◽  
...  

The plasma concentration profile of bleomycin in the distribution phase of patients younger than 65 years is needed to determine the suitable time interval for efficient application of electric pulses during electrochemotherapy. Additionally, bleomycin concentrations in the treated tumors for effective tumor response are not known. In this study, the pharmacokinetic profile of bleomycin in the distribution phase in 12 patients younger than 65 years was determined. In 17 patients, the intratumoral bleomycin concentration was determined before the application of electric pulses. In younger patients, the pharmacokinetics of intravenously injected bleomycin demonstrated a faster plasma clearance rate than that in patients older than 65 years. This outcome might indicate that the lowering of the standard bleomycin dose of 15,000 IU/m2 with intravenous bleomycin injection for electrochemotherapy is not recommended in younger patients. Based on the plasma concentration data gathered, a time interval for electrochemotherapy of 5–15 min after bleomycin injection was determined. The median bleomycin concentration in tumors 8 min after bleomycin injection, at the time of electroporation, was 170 ng/g. Based on collected data, the reduction of the bleomycin dose is not recommended in younger patients; however, a shortened time interval for application of electric pulses in electrochemotherapy to 5–15 min after intravenous bleomycin injection should be considered.


2021 ◽  
Vol 69 (3) ◽  
pp. 255-262
Author(s):  
Václav Matoušek ◽  
Andrew Chryss ◽  
Lionel Pullum

Abstract Vertical concentration distributions of solids conveyed in Newtonian fluids can be modelled using Rouse-Schmidt type distributions. Observations of solids conveyed in turbulent low Reynolds number visco-plastic carriers, suggest that solids are more readily suspended than their Newtonian counterparts, producing higher concentrations in the centre of the pipe. A Newtonian concentration profile model was adapted to include typical turbulent viscosity distributions within the pipe and particle motion calculated using non-Newtonian sheared settling. Predictions from this and the unmodified model, using the same wall viscosity, are compared with the chord averaged profile extracted from tomographic data obtained using a 50 mm horizontal pipe.


Sign in / Sign up

Export Citation Format

Share Document