scholarly journals Structural Reconstruction of Optically Invisible State in a Single Molecule via Scanning Tunneling Microscope

Author(s):  
Guohui Dong ◽  
Zhubin Hu ◽  
Xiang Sun ◽  
Hui Dong
Nano Letters ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 2803-2811 ◽  
Author(s):  
Kuniyuki Miwa ◽  
Hiroshi Imada ◽  
Miyabi Imai-Imada ◽  
Kensuke Kimura ◽  
Michael Galperin ◽  
...  

2021 ◽  
Author(s):  
Tengyang Gao ◽  
Zhichao Pan ◽  
Zhuanyun Cai ◽  
Jueting Zheng ◽  
Chun Tang ◽  
...  

Here, we report the switching among multiple conductance pathways achieved by sliding the scanning tunneling microscope tip among different binding sites under different electric fields. With the electric field increase,...


NANO ◽  
2006 ◽  
Vol 01 (01) ◽  
pp. 15-33 ◽  
Author(s):  
J. G. HOU ◽  
AIDI ZHAO

Scanning tunneling microscope (STM) is a powerful and unique tool for study single molecules. We review recent advances in single-molecule characterizations including direct STM imaging and I–V spectroscopy, dI/dV spectroscopy and mapping, and d2I/dV2 spectroscopy and mapping. Some recent experiments of STM-excited single-molecule light emission are also introduced. In the final part, recent developments of single-molecule manipulation with the STM as well as the applications are discussed.


Science ◽  
2018 ◽  
Vol 361 (6406) ◽  
pp. 1012-1016 ◽  
Author(s):  
K. R. Rusimova ◽  
R. M. Purkiss ◽  
R. Howes ◽  
F. Lee ◽  
S. Crampin ◽  
...  

The key to controlling reactions of molecules induced with the current of a scanning tunneling microscope (STM) tip is the ultrashort intermediate excited ionic state. The initial condition of the excited state is set by the energy and position of the injected current; thereafter, its dynamics determines the reaction outcome. We show that a STM can directly and controllably influence the excited-state dynamics. For the STM-induced desorption of toluene molecules from the Si(111)-7x7 surface, as the tip approaches the molecule, the probability of manipulation drops by two orders of magnitude. A two-channel quenching of the excited state is proposed, consisting of an invariant surface channel and a tip height–dependent channel. We conclude that picometer tip proximity regulates the lifetime of the excited state from 10 femtoseconds to less than 0.1 femtoseconds.


2019 ◽  
Vol 10 (43) ◽  
pp. 9998-10002 ◽  
Author(s):  
Tianren Fu ◽  
Shanelle Smith ◽  
María Camarasa-Gómez ◽  
Xiaofang Yu ◽  
Jiayi Xue ◽  
...  

We demonstrate that imidazole based π–π stacked dimers form strong and efficient conductance pathways in single-molecule junctions using the scanning-tunneling microscope-break junction (STM-BJ) technique and density functional theory-based calculations.


Sign in / Sign up

Export Citation Format

Share Document