Nonradiative Energy Transfer from CsPbBr3 Nanocrystals to CdSe/CdS Nanocrystals for Efficient Light Down Conversion

Author(s):  
Xinsu Zhang ◽  
Zhibin Zhang ◽  
Yixuan Liu ◽  
ShuangShuang Shi ◽  
Yuan Zhang ◽  
...  
1993 ◽  
Vol 58 (10) ◽  
pp. 2266-2271 ◽  
Author(s):  
Herbert Morawetz

Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1740
Author(s):  
Konrad Jakubowski ◽  
Manfred Heuberger ◽  
Rudolf Hufenus

The increasing interest in luminescent waveguides, applied as light concentrators, sensing elements, or decorative illuminating systems, is fostering efforts to further expand their functionality. Yarns and textiles based on a combination of distinct melt-spun polymer optical fibers (POFs), doped with individual luminescent dyes, can be beneficial for such applications since they enable easy tuning of the color of emitted light. Based on the energy transfer occurring between differently dyed filaments within a yarn or textile, the collective emission properties of such assemblies are adjustable over a wide range. The presented study demonstrates this effect using multicolor, meltspun, and photoluminescent POFs to measure their superimposed photoluminescent emission spectra. By varying the concentration of luminophores in yarn and fabric composition, the overall color of the resulting photoluminescent textiles can be tailored by the recapturing of light escaping from individual POFs. The ensuing color space is a mean to address the needs of specific applications, such as decorative elements and textile illumination by UV down-conversion.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2753
Author(s):  
Bartosz Fetliński ◽  
Sebastian Turczyński ◽  
Michał Malinowski ◽  
Paweł Szczepański

In this work, we investigate Ce3+ to Yb3+ energy transfer in Y4Al2O9 (YAM) for potential application in solar spectrum down-converting layers for photovoltaic devices. Photoluminescence properties set, of 10 samples, of the YAM host activated with Ce3+ and Yb3+ with varying concentrations are presented, and the Ce3+ to Yb3+ energy transfer is proven. Measurement of highly non-exponential luminescence decays of Ce3+ 5d band allowed for the calculation of maximal theoretical quantum efficiency, of the expected down-conversion process, equal to 123%. Measurements of Yb3+ emission intensity, in the function of excitation power, confirmed the predominantly single-photon downshifting character of Ce3+ to Yb3+ energy transfer. Favorable location of the Ce3+ 5d bands in YAM makes this system a great candidate for down-converting, and down-shifting, luminescent layers for photovoltaics.


1992 ◽  
Vol 46 (9) ◽  
pp. 1376-1381 ◽  
Author(s):  
Huei-Yang D. Ke ◽  
Gary D. Rayson

The emission spectra and fluorescence decay curves of solid UO2+2- Datura at liquid nitrogen temperature have been measured. The linewidth of the emission peaks of UO2+2 ions in UO2+2- Datura decreases with the UO2+2 concentration. This linewidth broadening phenomenon can be explained by the existence of resonance interactions between adjacent UO2+2- Datura species. The analysis of the emission peak position of the bound ions has been used to provide a measure of the electronic factors contributing to the interaction between the uranyl ion and phosphoryl and dicarboxyl moieties on the cell wall material. An observed blue shift of the uranyl fluorescence spectrum as a function of solution pH has been ascribed to a distortion of the normally linear O-U-O bond. An inter- and intra-molecular nonradiative energy transfer model has been successfully used to interpret the measured lifetime data of UO2+2- Datura.


Sign in / Sign up

Export Citation Format

Share Document