scholarly journals High Lithium Transference Number Electrolytes Containing Tetratriflylpropene’s Lithium Salt

2018 ◽  
Vol 9 (17) ◽  
pp. 5116-5120 ◽  
Author(s):  
J. Popovic ◽  
D. Höfler ◽  
J. P. Melchior ◽  
A. Münchinger ◽  
B. List ◽  
...  
Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


2019 ◽  
Author(s):  
Xiaohan Wu ◽  
Juliette Billaud ◽  
Iwan Jerjen ◽  
Federica Marone ◽  
Yuya Ishihara ◽  
...  

<div> <div> <div> <p>All-solid-state batteries are considered as attractive options for next-generation energy storage owing to the favourable properties (unit transference number and thermal stabilities) of solid electrolytes. However, there are also serious concerns about mechanical deformation of solid electrolytes leading to the degradation of the battery performance. Therefore, understanding the mechanism underlying the electro-mechanical properties in SSBs are essentially important. Here, we show three-dimensional and time-resolved measurements of an all-solid-state cell using synchrotron radiation x-ray tomographic microscopy. We could clearly observe the gradient of the electrochemical reaction and the morphological evolution in the composite layer. Volume expansion/compression of the active material (Sn) was strongly oriented along the thickness of the electrode. While this results in significant deformation (cracking) in the solid electrolyte region, we also find organized cracking patterns depending on the particle size and their arrangements. This study based on operando visualization therefore opens the door towards rational design of particles and electrode morphology for all-solid-state batteries. </p> </div> </div> </div>


1981 ◽  
Vol 46 (4) ◽  
pp. 917-925 ◽  
Author(s):  
Vladimír Pouzar ◽  
Miroslav Havel

Reaction of the aldehyde I with the lithium salt of 1-(2-tetrahydropyranyloxy)-2-propyne yielded the compounds II and IV. From the compound II the lactone XII was prepared via the intermediates III and X, the lactone XVIII was prepared from the substance IV via the intermediates V and XVI. The unsaturated lactones XII and XVIII were also prepared by sulfenylation and dehydrosulfenylation of the saturated lactones XIII and XIX. Based on chemical correlation and 1H-NMR spectra analyses of the compounds II and IV, the lactone XII was assigned the 20R-configuration whereas the lactone XVIII was allotted the 20S-configuration.


1983 ◽  
Vol 48 (8) ◽  
pp. 2423-2435 ◽  
Author(s):  
Vladimír Pouzar ◽  
Soňa Vašíčková ◽  
Pavel Drašar ◽  
Ivan Černý ◽  
Miroslav Havel

Reaction of 5α-pregnan-21-al (V), obtained from ester of the corresponding acid III via the alcohol IV, with lithium salt of 1-methoxymethoxy-2-propyne afforded both the isomeric 25-methoxymethoxy-21,26,27-trinor-5α-cholest-23-yn-22-ols (VI and VIII) which were converted into two 21,26,27-trinor-5α-cholestane-22,25-diols (XI, XV). Absolute configuration of the alcohols X and XIV was assigned by chemical correlation with derivatives XXVI and XXVII of known absolute configuration at C(20). The correlation was based on reduction of thiocarbonates derived from the diols XXII and XXIV for which also Cotton effects of their complexes with nickel acetylacetonate were studied. Both diols were prepared from 5α-pregnan-20-one (XVIII) via 5α-pregn-20-yne (XIX) and the 21,26,27-trinor-5α-cholest-20-ene derivative XXI.


Ionics ◽  
2009 ◽  
Vol 16 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. Rajendran ◽  
V. Shanthi Bama ◽  
M. Ramesh Prabhu

2021 ◽  
Vol 22 (13) ◽  
pp. 6787
Author(s):  
Constantin I. Tănase ◽  
Constantin Drăghici ◽  
Miron Teodor Căproiu ◽  
Anamaria Hanganu ◽  
Gheorghe Borodi ◽  
...  

β-Ketophosphonates with pentalenofurane fragments linked to the keto group were synthesized. The bulky pentalenofurane skeleton is expected to introduce more hindrance in the prostaglandin analogues of type III, greater than that obtained with the bicyclo[3.3.0]oct(a)ene fragments of prostaglandin analogues I and II, to slow down (retard) the inactivation of the prostaglandin analogues by oxidation of 15α-OH to the 15-keto group via the 15-PGDH pathway. Their synthesis was performed by a sequence of three high yield reactions, starting from the pentalenofurane alcohols 2, oxidation of alcohols to acids 3, esterification of acids 3 to methyl esters 4 and reaction of the esters 4 with lithium salt of dimethyl methanephosphonate at low temperature. The secondary compounds 6b and 6c were formed in small amounts in the oxidation reactions of 2b and 2c, and the NMR spectroscopy showed that their structure is that of an ester of the acid with the starting alcohol. Their molecular structures were confirmed by single crystal X-ray determination method for 6c and XRPD powder method for 6b.


2021 ◽  
Vol 11 (4) ◽  
pp. 1561
Author(s):  
Gabrielle Foran ◽  
Nina Verdier ◽  
David Lepage ◽  
Arnaud Prébé ◽  
David Aymé-Perrot ◽  
...  

Solid polymer electrolytes have been widely proposed for use in all solid-state lithium batteries. Advantages of polymer electrolytes over liquid and ceramic electrolytes include their flexibility, tunability and easy processability. An additional benefit of using some types of polymers for electrolytes is that they can be processed without the use of solvents. An example of polymers that are compatible with solvent-free processing is epoxide-containing precursors that can form films via the lithium salt-catalyzed epoxide ring opening polymerization reaction. Many polymers with epoxide functional groups are liquid under ambient conditions and can be used to directly dissolve lithium salts, allowing the reaction to be performed in a single reaction vessel under mild conditions. The existence of a variety of epoxide-containing polymers opens the possibility for significant customization of the resultant films. This review discusses several varieties of epoxide-based polymer electrolytes (polyethylene, silicone-based, amine and plasticizer-containing) and to compare them based on their thermal and electrochemical properties.


2020 ◽  
Author(s):  
J. J. Parajó ◽  
P. Vallet ◽  
L. Fernández-Míguez ◽  
M. Villanueva ◽  
J. Salgado
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document