An in vivo Interaction Network of DNA-Repair Proteins: A Snapshot at Double Strand Break Repair in Deinococcus radiodurans

Author(s):  
Aman Kumar Ujaoney ◽  
Mahesh Kumar Padwal ◽  
Bhakti Basu
Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4578-4587 ◽  
Author(s):  
Victoria J. Weston ◽  
Ceri E. Oldreive ◽  
Anna Skowronska ◽  
David G. Oscier ◽  
Guy Pratt ◽  
...  

Abstract The Ataxia Telangiectasia Mutated (ATM) gene is frequently inactivated in lymphoid malignancies such as chronic lymphocytic leukemia (CLL), T-prolymphocytic leukemia (T-PLL), and mantle cell lymphoma (MCL) and is associated with defective apoptosis in response to alkylating agents and purine analogues. ATM mutant cells exhibit impaired DNA double strand break repair. Poly (ADP-ribose) polymerase (PARP) inhibition that imposes the requirement for DNA double strand break repair should selectively sensitize ATM-deficient tumor cells to killing. We investigated in vitro sensitivity to the poly (ADP-ribose) polymerase inhibitor olaparib (AZD2281) of 5 ATM mutant lymphoblastoid cell lines (LCL), an ATM mutant MCL cell line, an ATM knockdown PGA CLL cell line, and 9 ATM-deficient primary CLLs induced to cycle and observed differential killing compared with ATM wildtype counterparts. Pharmacologic inhibition of ATM and ATM knockdown confirmed the effect was ATM-dependent and mediated through mitotic catastrophe independently of apoptosis. A nonobese diabetic/severe combined immunodeficient (NOD/SCID) murine xenograft model of an ATM mutant MCL cell line demonstrated significantly reduced tumor load and an increased survival of animals after olaparib treatment in vivo. Addition of olaparib sensitized ATM null tumor cells to DNA-damaging agents. We suggest that olaparib would be an appropriate agent for treating refractory ATM mutant lymphoid tumors.


DNA Repair ◽  
2016 ◽  
Vol 43 ◽  
pp. 113
Author(s):  
Kamalesh Dattaram Mumbrekar ◽  
Hassan Venkatesh Goutham ◽  
Bejadi Manjunath Vadhiraja ◽  
Satish Rao Bola Sadashiva

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1617
Author(s):  
Barbara N. Borsos ◽  
Hajnalka Majoros ◽  
Tibor Pankotai

The proper function of DNA repair is indispensable for eukaryotic cells since accumulation of DNA damages leads to genome instability and is a major cause of oncogenesis. Ubiquitylation and deubiquitylation play a pivotal role in the precise regulation of DNA repair pathways by coordinating the recruitment and removal of repair proteins at the damaged site. Here, we summarize the most important post-translational modifications (PTMs) involved in DNA double-strand break repair. Although we highlight the most relevant PTMs, we focus principally on ubiquitylation-related processes since these are the most robust regulatory pathways among those of DNA repair.


2008 ◽  
Vol 28 (11) ◽  
pp. 3639-3651 ◽  
Author(s):  
Yufuko Akamatsu ◽  
Yasuto Murayama ◽  
Takatomi Yamada ◽  
Tomofumi Nakazaki ◽  
Yasuhiro Tsutsui ◽  
...  

ABSTRACT The Schizosaccharomyces pombe nip1 +/ctp1 + gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.


2013 ◽  
Vol 50 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Jörg Renkawitz ◽  
Claudio A. Lademann ◽  
Marian Kalocsay ◽  
Stefan Jentsch

2008 ◽  
Vol 44 (9) ◽  
pp. 1025-1030 ◽  
Author(s):  
V. P. Shcherbakov ◽  
S. T. Sizova ◽  
T. S. Shcherbakova ◽  
I. E. Granovsky ◽  
K. Yu. Popad’in

Sign in / Sign up

Export Citation Format

Share Document