Nonwettable Hierarchical Structure Effect on Droplet Impact and Spreading Dynamics

Langmuir ◽  
2018 ◽  
Vol 34 (19) ◽  
pp. 5480-5486 ◽  
Author(s):  
Hyungmo Kim ◽  
Seol Ha Kim
2019 ◽  
Vol 9 (11) ◽  
pp. 2214 ◽  
Author(s):  
Yanjie Yang ◽  
Xiaoqian Chen ◽  
Yiyong Huang

The influence of apex angle and tilting angle on droplet spreading dynamics after impinging on wedge-patterned biphilic surface has been experimentally investigated. Once the droplet contacts the wedge-patterned biphilic surface, it spreads radially on the surface, with a tendency toward a more hydrophilic area. After reaching the maximum spreading diameter, the droplet contracts back. From the experimental results, the normalized diameter β ( β = D / D 0 ) was found to be related with the Weber number ( W e = ρ D V 2 / γ ) as β max ∼ W e 1 / 5 . during the first spreading process. Below 67.4°, a larger apex angle can help a droplet to spread on the surface more quickly. The maximum spreading diameter has a tendency to increase with the Weber number, and then decrease after the Weber number, beyond 2.7. Approximately, the critical Weber number is about 5, when the droplet lifts off the surface. Considering the effect of apex angle, the maximum normalized spreading diameter has a rough expression as β ∼ α τ


Author(s):  
E. Baer

The most advanced macromolecular materials are found in plants and animals, and certainly the connective tissues in mammals are amongst the most advanced macromolecular composites known to mankind. The efficient use of collagen, a fibrous protein, in the design of both soft and hard connective tissues is worthy of comment. Very crudely, in bone collagen serves as a highly efficient binder for the inorganic hydroxyappatite which stiffens the structure. The interactions between the organic fiber of collagen and the inorganic material seem to occur at the nano (scale) level of organization. Epitatic crystallization of the inorganic phase on the fibers has been reported to give a highly anisotropic, stress responsive, structure. Soft connective tissues also have sophisticated oriented hierarchical structures. The collagen fibers are “glued” together by a highly hydrated gel-like proteoglycan matrix. One of the simplest structures of this type is tendon which functions primarily in uniaxial tension as a reinforced elastomeric cable between muscle and bone.


1999 ◽  
Author(s):  
Craig N. Sawchuk ◽  
David F. Tolin ◽  
Suzanne A. Meunier ◽  
Scott O. Lilienfeld ◽  
Jeffrey M. Lohr ◽  
...  

2014 ◽  
Author(s):  
Michael Joseph Boudreaux ◽  
Daniel Ozer

Sign in / Sign up

Export Citation Format

Share Document