scholarly journals Unravelling the Enzymatic Degradation Mechanism of Supramolecular Peptide Nanofibers and Its Correlation with Their Internal Viscosity

Nano Letters ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 7375-7381
Author(s):  
Yejiao Shi ◽  
Peter A. Summers ◽  
Marina K. Kuimova ◽  
Helena S. Azevedo
2021 ◽  
Vol 237 ◽  
pp. 01002
Author(s):  
ShiYuan Huang ◽  
Sheng Li ◽  
ZhenYu Wang ◽  
SenHuan Lin ◽  
Jian Deng

The lignin-degrading enzyme system of white rot fungi is highly efficient and non-specific, and can degrade a variety of pollutants, including dyes, phenolic compounds and pesticides.The article presents an overview of the mechanism of enzymatic degradation of white rot fungi and its research status in several refractory wastewater were described.


Nanoscale ◽  
2020 ◽  
Vol 12 (36) ◽  
pp. 18692-18700
Author(s):  
Deepika Gupta ◽  
Ranjan Sasmal ◽  
Ashmeet Singh ◽  
Jojo P. Joseph ◽  
Chirag Miglani ◽  
...  

Chirality-driven self-sorting in peptide nanofibers that exhibits enantioselective enzymatic degradation for l-peptide fibers over their d-counterparts as visualized by super-resolution microscopy.


2008 ◽  
Vol 86 (6) ◽  
pp. 471-483 ◽  
Author(s):  
Keiji Numata ◽  
Hideki Abe ◽  
Yoshiharu Doi

Poly(hydroxyalkanoate)s (PHAs) have attracted much attention as environmentally compatible polymeric materials that can be produced from renewable carbon resources. Biodegradation of PHA materials occurs by the function of extracellular PHA depolymerase secreted from microorganisms. Thus, elucidation of the enzymatic degradation mechanism for PHA materials is important to design PHA materials with desirable properties and controlled biodegradability. The solid PHA polymer is a water-insoluble substrate but PHA depolymerases are soluble in water. Therefore, the enzymatic degradation of PHA materials is a heterogeneous reaction on the material’s surface. Two distinct processes are involved during the degradation, namely, adsorption of the enzyme on the surface of PHA material and the subsequent hydrolysis of polymer chains. Atomic force microscopy (AFM) is a powerful tool that has been used for the quantitative analysis of PHA crystal degradation. AFM enables the characterization of the crystal surface nanostructure in a buffer solution. By using in-situ (real-time) AFM observations, we recently succeeded in observing the degradation processes of PHA crystals. Subsequently, we were also able to investigate the degradation rates of PHA crystals using the same technique. In this review, we have attempted to give an overview concerning the direct visualization of the adsorption, as well as the hydrolysis reactions of PHA depolymerases at the nanometer scale. In addition, we present other analytical techniques besides AFM as a complimentary approach to analyze the effect of enzyme adsorption on PHA crystals.Key words: poly(hydroxyalkanoate) (PHA), enzymatic degradation, lamellar crystal, PHA depolymerase.


2020 ◽  
Vol 107 ◽  
pp. 54-71
Author(s):  
Sankar Chakma ◽  
Pritam Kumar Dikshit ◽  
Manju Nagar Galodiya ◽  
Ardhendu Sekhar Giri ◽  
Vijayanand S. Moholkar

2019 ◽  
Vol 37 (No. 3) ◽  
pp. 141-154
Author(s):  
Jian Zhang ◽  
Guangsen Song ◽  
Yunjun Mei ◽  
Rui Li ◽  
Haiyan Zhang ◽  
...  

Raffinose family oligosaccharides (RFOs) are α-galactosyl derivatives of sucrose or glucose. They are found in a large variety of seeds from many different families such as beans, vegetables and whole grains. Due to absence of α-galactosidase in the digestive tract of humans and other monogastric animals, RFOs are responsible for intestinal disturbances (flatulence) following the ingestion of legume-derived products. Structural relationships of RFOs and their enzymatic degradation mechanism are described. Concentration and distribution from various seed sources are introduced. The present status on removal of the RFOs (such as soaking, cooking, germination, and addition of α-galactosidase) is summarized. At the meantime, α-galactosidases from botanic and microbial sources and their partial enzymatic properties are also presented in detail. Based on a comparison of various removal treatments, the microbial α-galactosidases are thought as the most optimum candidate for removing RFOs in legumes, and the ideal system for the RFO removal is proposed.


Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.


2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


Sign in / Sign up

Export Citation Format

Share Document