Role of the exosporial membrane in attachment and germination of C. sporogenes

Author(s):  
B.J. Panessa-Warren ◽  
G.T. Tortora ◽  
J.B. Warren

Some bacteria are capable of forming highly resistant spores when environmental conditions are not adequate for growth. Depending on the genus and species of the bacterium, these endospores are resistant in varying degrees to heat, cold, pressure, enzymatic degradation, ionizing radiation, chemical sterilants,physical trauma and organic solvents. The genus Clostridium, responsible for botulism poisoning, tetanus, gas gangrene and diarrhea in man, produces endospores which are highly resistant. Although some sporocides can kill Clostridial spores, the spores require extended contact with a sporocidal agent to achieve spore death. In most clinical situations, this extended period of treatment is not possible nor practical. This investigation examines Clostridium sporogenes endospores by light, transmission and scanning electron microscopy under various dormant and growth conditions, cataloging each stage in the germination and outgrowth process, and analyzing the role played by the exosporial membrane in the attachment and germination of the spore.

2021 ◽  
Vol 7 (8) ◽  
pp. eabc2331 ◽  
Author(s):  
Jose M. Ayuso ◽  
Shujah Rehman ◽  
Maria Virumbrales-Munoz ◽  
Patrick H. McMinn ◽  
Peter Geiger ◽  
...  

Solid tumors generate a suppressive environment that imposes an overwhelming burden on the immune system. Nutrient depletion, waste product accumulation, hypoxia, and pH acidification severely compromise the capacity of effector immune cells such as T and natural killer (NK) cells to destroy cancer cells. However, the specific molecular mechanisms driving immune suppression, as well as the capacity of immune cells to adapt to the suppressive environment, are not completely understood. Thus, here, we used an in vitro microfluidic tumor-on-a-chip platform to evaluate how NK cells respond to the tumor-induced suppressive environment. The results demonstrated that the suppressive environment created by the tumor gradually eroded NK cell cytotoxic capacity, leading to compromised NK cell surveillance and tumor tolerance. Further, NK cell exhaustion persisted for an extended period of time after removing NK cells from the microfluidic platform. Last, the addition of checkpoint inhibitors and immunomodulatory agents alleviated NK cell exhaustion.


2010 ◽  
Vol 426 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Jofre Ferrer-Dalmau ◽  
Asier González ◽  
Maria Platara ◽  
Clara Navarrete ◽  
José L. Martínez ◽  
...  

Maintenance of cation homoeostasis is a key process for any living organism. Specific mutations in Glc7, the essential catalytic subunit of yeast protein phosphatase 1, result in salt and alkaline pH sensitivity, suggesting a role for this protein in cation homoeostasis. We screened a collection of Glc7 regulatory subunit mutants for altered tolerance to diverse cations (sodium, lithium and calcium) and alkaline pH. Among 18 candidates, only deletion of REF2 (RNA end formation 2) yielded increased sensitivity to these conditions, as well as to diverse organic toxic cations. The Ref2F374A mutation, which renders it unable to bind Glc7, did not rescue the salt-related phenotypes of the ref2 strain, suggesting that Ref2 function in cation homoeostasis is mediated by Glc7. The ref2 deletion mutant displays a marked decrease in lithium efflux, which can be explained by the inability of these cells to fully induce the Na+-ATPase ENA1 gene. The effect of lack of Ref2 is additive to that of blockage of the calcineurin pathway and might disrupt multiple mechanisms controlling ENA1 expression. ref2 cells display a striking defect in vacuolar morphogenesis, which probably accounts for the increased calcium levels observed under standard growth conditions and the strong calcium sensitivity of this mutant. Remarkably, the evidence collected indicates that the role of Ref2 in cation homoeostasis may be unrelated to its previously identified function in the formation of mRNA via the APT (for associated with Pta1) complex.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nehad Magdy ◽  
Sameh Gafar

Purpose The purpose of this research paper is to study a comparison between two dosimetry systems, both of them based on basic violet dye (BV). Design/methodology/approach The first system depends on (BV) (incorporating polyvinyl alcohol) as a thin-film dosimeter. The second system also relies on (BV) as a solution dosimeter, which is more sensitive to gamma rays. The two prepared film/solutions have a considerable signal that decreases upon irradiation and the strength of the signal decreases with increasing radiation dose. Findings The gamma ray absorbed dose for these dosimeters was found to be up to 35 kGy for films and 1 kGy for the liquid phase. All dosimetric characteristics as radiation chemical yield, additive substance, dose-response function, radiation sensitivity, also before and after-irradiation stability under various conditions were considered. Practical implications It is expected the vital role of gamma radiation on this dye in its two forms or two media. This reveals their wide applications in the field of gamma irradiation processing. Originality/value These two dosimetry systems which depend upon the same dye are safe to handle, inexpensive, available raw materials and can be applied in various dosimetry applications as mentioned above.


2018 ◽  
Vol 2 (2) ◽  
pp. 14-17
Author(s):  
Zhuola Zhuola ◽  
Steve Barrett ◽  
Yalda Ashraf Kharaz ◽  
Riaz Akhtar

The mechanical properties of ocular tissues, such as the sclera, have a major impact on healthy eye function, and are governed by the properties and composition of the microstructural components. For example, biomechanical degradation associated with myopia occurs alongside a reduction of proteoglycans (PGs). In this study, the role of PG degradation in the nanomechanical properties of the porcine sclera is explored. In-vitro enzymatic degradation of PGs was conducted with α-amylase and chondroitinase ABC enzymes. Collagen fibril morphology and nanomechanical stiffness were measured with atomic force microscopy (AFM). The elastic modulus of the tissue was reduced in all enzyme-treated samples relative to controls. In addition, collagen fibril organization was disrupted by PG depletion. Our data demonstrate that PGs play an important role in determining not only the mechanical properties at these length scales, but also collagen fibril arrangement.


1989 ◽  
Vol 64 (2) ◽  
pp. 375-380 ◽  
Author(s):  
Neil Brewer ◽  
Joanne M. Smith

This study examined whether the social status of mainstreamed retarded children among their nonretarded peers improved as a consequence of extended contact. A sociometric questionnaire was administered to the nonretarded classmates of two groups of retarded children mainstreamed for an average of 1.7 yr. and 4 yr., respectively. Social acceptance of retarded children was low relative to their nonretarded peers. However, in contrast with previous research, retarded children did not receive higher social rejection ratings. Acceptance and rejection measures did not indicate any improvement in social status of the retarded children as a result of an extended period of mainstreaming.


2015 ◽  
Vol 76 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Marzena Niemczyk ◽  
Anna Żółciak ◽  
Wrzesiński Piotr

Abstract The aim of this study was to evaluate the development of common yew, Taxus baccata L., with respect to canopy openness. The plants were growing in ex-situ conservation plantations (established in 2008) in the understory of different tree species. Eleven forest plantations belonging to the following five forest districts were inventoried: Rokita, Baligród, Kołaczyce, Międzylesie and Henryków. In each plantation, the height and height increment of 200 yews were measured and gap light transmission indices were determined. The canopy species affecting yew growth most significantly were oak (Quercus sp.) and Scots pine (Pinus sylvestris L.), followed by Norway spruce (Picea abies Karst.), silver fir (Abies alba L.) and European beech (Fagus sylvatica L.). The most favorable development of yew occurred at 30% canopy openness. An increasing light transmission index correlated with a decrease in the proportion of treelike yews. An insufficient amount of light resulted in a low height increment of yews growing under the canopy and an extended period of direct competition of yews with herbaceous species.


2008 ◽  
Vol 74 (12) ◽  
pp. 3644-3651 ◽  
Author(s):  
Wook Kim ◽  
Stuart B. Levy

ABSTRACT The annotation process of a newly sequenced bacterial genome is largely based on algorithms derived from databases of previously defined RNA and protein-encoding gene structures. This process generally excludes the possibility that the two strands of a given stretch of DNA can each harbor a gene in an overlapping manner. While the presence of such structures in eukaryotic genomes is considered to be relatively common, their counterparts in prokaryotic genomes are just beginning to be recognized. Application of an in vivo expression technology has previously identified 22 discrete genetic loci in Pseudomonas fluorescens Pf0-1 that were specifically activated in the soil environment, of which 10 were present in an antisense orientation relative to previously annotated genes. This observation led to the hypothesis that the physiological role of overlapping genetic structures may be relevant to growth conditions outside artificial laboratory media. Here, we examined the role of one of the overlapping gene pairs, iiv19 and leuA2, in soil. Although iiv19 was previously demonstrated to be preferentially activated in the soil environment, its absence did not alter the ability of P. fluorescens to colonize or survive in soil. Surprisingly, the absence of the leuA2 gene conferred a fitness advantage in the soil environment when leucine was supplied exogenously. This effect was determined to be independent of the iiv19 gene, and further analyses revealed that amino acid antagonism was the underlying mechanism behind the observed fitness advantage of the bacterium in soil. Our findings provide a potential mechanism for the frequent occurrence of auxotrophic mutants of Pseudomonas spp. in the lungs of cystic fibrosis patients.


1987 ◽  
Author(s):  
J Arnout ◽  
A Van Hecken ◽  
I Delepeleire ◽  
Y Miyamoto ◽  
I Holmes ◽  
...  

Platelet activating factor (PAF) is a naturally occurring phospholipid with a wide spectrum of biological activities. Although PAF has been ascribed a potential role in various conditions including inflammation, asthma, glomerulonephritis and thrombosis, its precise function in physiologic/pathophysiologic processes remains unclear. The introduction of selective PAF receptor antagonists could represent a useful tool to extend our knowledge of the role of this mediator in health and disease.We have investigated the efficacy and tolerability of (RS)-2-methoxy-3-(octadecylcarbomoyloxy)propy1 2-(3-thiazolio)-ethyIphosphate (CV-3988, Takeda Chem. Ind), a selective PAF antagonist with structural analogies with PAF, after intravenous infusion in man in a double-blind, placebo-controlled study. The compound, in doses from 750 to 2,000 pg/kg, significantly reduced platelet sensitivity to PAF. The threshold aggregating concentration (TAC) of PAF was defined as the minimal concentration causing an irreversible aggregation with a maximal amplitude of at least 50% of the difference in light transmission between platelet rich plasma and platelet poor plasma. It increased in a dose-dependent manner reaching 3.6 times the basal TAC (p<0.0005) at the end and 2.60 times the basal TAC (p<0.0005) 4 hours after infusion of the highest dose. The TAC of PAF returned to the basal value within 24 hours after the end of the infusion.CV-3988 did not cause major side effects nor changes in blood pressure, pulse or respiratory rate. However, small but clinically insignificant changes in plasma haemoglobin and serum haptoglobin were seen at the end and four hours after the end of the infusion, indicating a slight haemolysis probably by high local concentrations at the infusion site.Our results indicate that, when adequate infusion volumes and infusion rates are used, CV-3988 can be safely administered to man and should be useful in elucidating the role of PAF in health and disease.


Sign in / Sign up

Export Citation Format

Share Document