Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction

Nano Letters ◽  
2017 ◽  
Vol 18 (1) ◽  
pp. 152-157 ◽  
Author(s):  
Hannes Böckmann ◽  
Sylwester Gawinkowski ◽  
Jacek Waluk ◽  
Markus B. Raschke ◽  
Martin Wolf ◽  
...  
2003 ◽  
Vol 02 (04n05) ◽  
pp. 197-218
Author(s):  
K.-F. BRAUN ◽  
F. MORESCO ◽  
K. MORGENSTERN ◽  
S. FÖLSCH ◽  
J. REPP ◽  
...  

Controlled manipulations with scanning tunneling microscope (STM) down to the scale of small molecules and single atoms allow to build molecular and atomic nanosystems, leading to the fascinating possibility of creating manmade structures on atomic scale. Here we present a short review on investigations based on atomic scale manipulation. Upon soft lateral manipulation of adsorbed species, in which only tip/particle forces are used, three different manipulation modes can be discerned: pushing, pulling and sliding. Even the manipulation of strongly bound native substrate atoms is possible. We demonstrate applications as local analytic and synthetic chemistry tools, with important consequences on surface structure research. Vertical manipulation of Xe and CO leads to improved imaging with functionalized tips. With CO deliberately transferred to the tip, we have also succeeded to perform vibrational spectroscopy on single molecules. Furthermore, we describe how we have reproduced a full chemical reaction with single molecules, whereby all basic steps, namely preparation of the reactants, diffusion and association, are induced with the STM tip. Here also field and electron current effects are employed. Finally, we have extended the manipulation techniques to large specially designed molecules by performing lateral manipulation in constant height and realizing the principle of a conformational molecular switch. Artificial nanoscale structures built in atom by atom fashion can serve as quantum laboratories for investigations of various physical properties.


NANO ◽  
2006 ◽  
Vol 01 (01) ◽  
pp. 15-33 ◽  
Author(s):  
J. G. HOU ◽  
AIDI ZHAO

Scanning tunneling microscope (STM) is a powerful and unique tool for study single molecules. We review recent advances in single-molecule characterizations including direct STM imaging and I–V spectroscopy, dI/dV spectroscopy and mapping, and d2I/dV2 spectroscopy and mapping. Some recent experiments of STM-excited single-molecule light emission are also introduced. In the final part, recent developments of single-molecule manipulation with the STM as well as the applications are discussed.


Nano Letters ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 3597-3602 ◽  
Author(s):  
Hannes Böckmann ◽  
Shuyi Liu ◽  
Melanie Müller ◽  
Adnan Hammud ◽  
Martin Wolf ◽  
...  

2010 ◽  
Vol 104 (17) ◽  
Author(s):  
Matthew J. Comstock ◽  
David A. Strubbe ◽  
Luis Berbil-Bautista ◽  
Niv Levy ◽  
Jongweon Cho ◽  
...  

2010 ◽  
Vol 42 (10-11) ◽  
pp. 1629-1633 ◽  
Author(s):  
Manfred Parschau ◽  
Hans J. Hug ◽  
Karl-Heinz Rieder ◽  
Karl-Heinz Ernst

Author(s):  
Virgil Elings

With the expanding use of the scanning tunneling microscope, the technology is developing into other scanning near field microscopes, microscopes whose resolution is determined by the size of the probe, not by some wavelength. The first available “son of STM” will be the atomic force microscope (AFM), a very low force profilometer which has atomic resolution and can profile non-conducting surfaces. The hope is that this microscope may find more applications in biology than the scanning tunneling microscope (STM), which requires a conducting or very thin sample.In the past five years, the STM has progressed from curiosity to everyday lab tool, imaging surfaces with scans from a few nanometers up to 100 microns. When compared to an SEM, the STM has the advantages of higher resolution, lower cost, operation in air or liquid, real three-dimensional output, and small size. The disadvantages are smaller scan size, slower scan speeds, fewer spectroscopic functions and, of course, not as many of the nice features of the more mature electron microscopes. The AFM has similar features to the STM except that the detector and profiling tips are more complicated and more difficult to operate—disadvantages that will decrease with time.


Sign in / Sign up

Export Citation Format

Share Document