Prediction of N-Nitrosamine Partition Coefficients for Derisking Drug Substance Manufacturing Processes

2021 ◽  
Vol 25 (4) ◽  
pp. 871-883
Author(s):  
Ian W. Ashworth ◽  
Timothy T. Curran ◽  
J. Gair Ford ◽  
Simone Tomasi
2021 ◽  
Vol 14 (9) ◽  
pp. 934
Author(s):  
Tayfun Tanir ◽  
Marvin Orellana ◽  
Aster Escalante ◽  
Carolina Moraes de Souza ◽  
Michael S. Koeris

Within this first part of the two-part series on phage manufacturing, we will give an overview of the process leading to bacteriophages as a drug substance, before covering the formulation into a drug product in the second part. The principal goal is to provide the reader with a comprehensive framework of the challenges and opportunities that present themselves when developing manufacturing processes for bacteriophage-based products. We will examine cell line development for manufacture, upstream and downstream processes, while also covering the additional opportunities that engineered bacteriophages present.


2020 ◽  
Vol 21 (7) ◽  
Author(s):  
Noah J. Wichrowski ◽  
Adam C. Fisher ◽  
Nilou S. Arden ◽  
Xiaochuan Yang

1987 ◽  
Vol 26 (06) ◽  
pp. 253-257
Author(s):  
M. Mäntylä ◽  
J. Perkkiö ◽  
J. Heikkonen

The relative partition coefficients of krypton and xenon, and the regional blood flow in 27 superficial malignant tumour nodules in 22 patients with diagnosed tumours were measured using the 85mKr- and 133Xe-clearance method. In order to minimize the effect of biological variables on the measurements the radionuclides were injected simultaneously into the tumour. The distribution of the radiotracers was assumed to be in equilibrium at the beginning of the experiment. The blood perfusion was calculated by fitting a two-exponential function to the measuring points. The mean value of the perfusion rate calculated from the xenon results was 13 ± 10 ml/(100 g-min) [range 3 to 38 ml/(100 g-min)] and from the krypton results 19 ± 11 ml/(100 g-min) [range 5 to 45 ml/(100 g-min)]. These values were obtained, if the partition coefficients are equal to one. The equations obtained by using compartmental analysis were used for the calculation of the relative partition coefficient of krypton and xenon. The partition coefficient of krypton was found to be slightly smaller than that of xenon, which may be due to its smaller molecular weight.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (08) ◽  
pp. 437-443
Author(s):  
Lebo Xu ◽  
Jeremy Meyers ◽  
Peter Hart

Coffee edge-wicking testing was conducted on two groups of highly-sized paperboard manufactured at two mills with similar manufacturing processes, but with vastly different local fiber sources. Although the Hercules size test (HST) indicated similar internal size levels between the two types of board, the edge-wicking behavior was noticeably different. Analysis of fiber structure revealed that the board with more edge-wicking had fibers with thicker fiber walls, which kept the fiber lumen more open after pressing and drying on a paper machine. It was demonstrated that liquid penetration through voids between fibers in highly-sized paperboard was limited, because the fiber surface was well protected by the presence of sufficient sizing agent. Nevertheless, freshly exposed fiber walls and lumens at the cut edge of the sheet were not protected by sizing material, which facilitated edge-wicking. The correlation between fiber structure and edge-wicking behavior was highlighted in this work to inspire development of novel sizing strategies that protect the freshly cut edge of the sheet from edge-wicking.


2003 ◽  
Vol 775 ◽  
Author(s):  
Sung-Hwa Oh ◽  
Ju-Myung Song ◽  
Joon-Seop Kim ◽  
Hyang-Rim Oh ◽  
Jeong-A Yu

AbstractSolution behaviors of poly(styrene-co-sodium methacrylate) were studied by fluorescence spectroscopic methods using pyrene as a probe. The mol% of methacrylate was in the range 3.6–9.4. Water and N,N-dimethylforamide(DMF) mixture was used as a solvent (DMF/water = 0.2 mol %). The critical micelle (or aggregation) concentrations of ionomers and the partition coefficients of pyrene were obtained the temperature range 10–80°C. At room temperature, the values of CMCs (or CACs) were in the range 4.7 ×10-6 5.3 ×10-6 g/mL and we could not find any notable effect of the content of ionic repeat units within the experimental errors. Unlike CMCs, as the ion content increased, partitioning of pyrene between the hydrophobic aggregates and an aqueous media decreased from 1.5 ×105 to 9.4 ×104. As the temperature increased from 10 to 80 °C, the values of CMCs increased less than one order of magnitude. While, the partition coefficients of pyrene decreased one order of magnitude and the effect of the ion content became negligible.


Sign in / Sign up

Export Citation Format

Share Document