Titanium Nitride Protected Cuprous Oxide Photocathode for Stable and Efficient Water Reduction

Author(s):  
Lingxue Diao ◽  
Lingcheng Zheng ◽  
Rui Zhang ◽  
Feifei Chen ◽  
Yan Li ◽  
...  

2020 ◽  
Vol 32 (39) ◽  
pp. 2002486
Author(s):  
Hanjun Sun ◽  
Changlin Dong ◽  
Qinglei Liu ◽  
Yang Yuan ◽  
Tao Zhang ◽  
...  


ACS Nano ◽  
2013 ◽  
Vol 7 (2) ◽  
pp. 1709-1717 ◽  
Author(s):  
Zhonghai Zhang ◽  
Rubal Dua ◽  
Lianbin Zhang ◽  
Haibo Zhu ◽  
Hongnan Zhang ◽  
...  




Author(s):  
Bradley L. Thiel ◽  
Chan Han R. P. ◽  
Kurosky L. C. Hutter ◽  
I. A. Aksay ◽  
Mehmet Sarikaya

The identification of extraneous phases is important in understanding of high Tc superconducting oxides. The spectroscopic techniques commonly used in determining the origin of superconductivity (such as RAMAN, XPS, AES, and EXAFS) are surface-sensitive. Hence a grain boundary phase several nanometers thick could produce irrelevant spectroscopic results and cause erroneous conclusions. The intergranular phases present a major technological consideration for practical applications. In this communication we report the identification of a Cu2O grain boundary phase which forms during the sintering of YBa2Cu3O7-x (1:2:3 compound).Samples are prepared using a mixture of Y2O3. CuO, and BaO2 powders dispersed in ethanol for complete mixing. The pellets pressed at 20,000 psi are heated to 950°C at a rate of 5°C per min, held for 1 hr, and cooled at 1°C per min to room temperature. The samples show a Tc of 91K with a transition width of 2K. In order to prevent damage, a low temperature stage is used in milling to prepare thin foils which are then observed, using a liquid nitrogen holder, in a Philips 430T at 300 kV.



Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.



1989 ◽  
Vol 50 (C7) ◽  
pp. C7-169-C7-173
Author(s):  
R.C BUSCHERT ◽  
P. N. GIBSON ◽  
W. GISSLER ◽  
J. HAUPT ◽  
T. A. CRABB
Keyword(s):  


1980 ◽  
Vol 41 (5) ◽  
pp. 558-566
Author(s):  
O. Yu Elagina ◽  
◽  
D.O. Kolbas ◽  
A.G. Buklakov ◽  
N. Derr ◽  
...  


2012 ◽  
Vol 27 (2) ◽  
pp. 195-200
Author(s):  
Yue-Jun WANG ◽  
Kang-Gen ZHOU ◽  
Zhi-Gang JIANG


Author(s):  
M. A. Tit ◽  
S. N. Belyaev

This article considers the research results of the effect of stoichiometry on the properties of titanium nitride thin-film coatings of the float and electrostatic gyroscopes. It presents the results of tests of such mechanical and optical characteristics of titanium nitride thin-film structures as microhardness, resistance to wear and friction, and image contrast determined by the reflection coefficients of a titanium nitride base surface and a raster pattern formed by local laser oxidation. When making a rotor of a cryogenic gyroscope, the prospects of use and technological methods for the formation of functional surface structures of niobium carbide and nitride are considered. It is shown that during the formation of coatings of the required composition, the most important is the thermodynamic estimation of possible interactions. These interactions allow us to accomplish the structural-phase modification of the material, which is determined by the complex of possible topochemical reactions leading to the formation of compounds, including non-stoichiometric composition.



Sign in / Sign up

Export Citation Format

Share Document