Magnetic Nanoparticles as a Tool for Remote DNA Manipulations at a Single-Molecule Level

2021 ◽  
Vol 13 (12) ◽  
pp. 14458-14469
Author(s):  
Aleksey A. Nikitin ◽  
Anton Yu Yurenya ◽  
Timofei S. Zatsepin ◽  
Ilya O. Aparin ◽  
Vladimir P. Chekhonin ◽  
...  
2020 ◽  
Author(s):  
Jia Hui Li ◽  
Paula Santos-Otte ◽  
Braedyn Au ◽  
Jakob Rentsch ◽  
Stephan Block ◽  
...  

AbstractThe plasma membrane is the interface through which cells interact with their environment. Membrane proteins are embedded in the lipid bilayer of the plasma membrane and their function in this context is often linked to their specific location and dynamics within the membrane. However, few methods are available for nanoscale manipulation of membrane protein location at the single molecule level. Here, we report the use of fluorescent magnetic nanoparticles (FMNPs) to track membrane molecules and to manipulate their movement. FMNPs allow single-particle tracking (SPT) at 10 nm spatial and 5 ms temporal resolution, and using a magnetic needle, we pull membrane components laterally through the membrane with femtonewton-range forces. In this way, we successfully dragged lipid-anchored and transmembrane proteins over the surface of living cells. Doing so, we detected submembrane barriers and in combination with super-resolution microscopy could localize these barriers to the actin cytoskeleton. We present here a versatile approach to probe membrane processes in live cells via the magnetic control of membrane protein motion.


2021 ◽  
Author(s):  
Lingling Zhang ◽  
Rui Hao ◽  
Hongjun You ◽  
Hu Nan ◽  
Yanzhu Dai ◽  
...  

Abstract Developing advanced sensing and detection technologies to effectively monitor organic micropollutants in water is under urgent demand in both scientific and industrial communities. Currently, owing to the ultrahigh sensitivity on the single-molecule level with highly informative spectra characteristics, SERS technique is regarded as the most direct and effective detection technique. However, some weakly adsorbed molecules, such as most of persistent organic pollutants, cannot exhibit strong SERS signals, which is a long-standing key challenge that has not been solved. Here, we show an enrichment-typed sensing strategy based on a powerful porous composite material, call mesoporous nanosponge. The nanosponge consists of magnetic nanoparticles immobilized porous β-cyclodextrin polymers, demonstrating remarkable capability of effective and fast removal of organic micropollutants, e.g. ~90% removal efficiency within ~1 min. With the anchoring of magnetic nanoparticles, the current new polymer adsorbent can be easily recycled from water and re-dispersed in ethanol so that the target molecules in the cavity of adsorbent is concentrated, with an enrichment factor up to ~103. By means of the current enrichment strategy, the limit of detection (LOD) of the typical organic pollutants can be significantly improved, i.e. increasing 2~3 orders of magnitude, compared with the detection without molecule enrichment protocol. Consequently, the current enrichment strategy is proved to be applicable in a variety of fields for portable and fast detection, such as Raman and fluorescent.


2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

Biochemistry ◽  
2021 ◽  
Vol 60 (7) ◽  
pp. 494-499
Author(s):  
Ke Lu ◽  
Cuifang Liu ◽  
Yinuo Liu ◽  
Anfeng Luo ◽  
Jun Chen ◽  
...  

2021 ◽  
Author(s):  
David A Garcia ◽  
Gregory Fettweis ◽  
Diego M Presman ◽  
Ville Paakinaho ◽  
Christopher Jarzynski ◽  
...  

Abstract Single-molecule tracking (SMT) allows the study of transcription factor (TF) dynamics in the nucleus, giving important information regarding the diffusion and binding behavior of these proteins in the nuclear environment. Dwell time distributions obtained by SMT for most TFs appear to follow bi-exponential behavior. This has been ascribed to two discrete populations of TFs—one non-specifically bound to chromatin and another specifically bound to target sites, as implied by decades of biochemical studies. However, emerging studies suggest alternate models for dwell-time distributions, indicating the existence of more than two populations of TFs (multi-exponential distribution), or even the absence of discrete states altogether (power-law distribution). Here, we present an analytical pipeline to evaluate which model best explains SMT data. We find that a broad spectrum of TFs (including glucocorticoid receptor, oestrogen receptor, FOXA1, CTCF) follow a power-law distribution of dwell-times, blurring the temporal line between non-specific and specific binding, suggesting that productive binding may involve longer binding events than previously believed. From these observations, we propose a continuum of affinities model to explain TF dynamics, that is consistent with complex interactions of TFs with multiple nuclear domains as well as binding and searching on the chromatin template.


2021 ◽  
Vol 11 (8) ◽  
pp. 3317
Author(s):  
C.S. Quintans ◽  
Denis Andrienko ◽  
Katrin F. Domke ◽  
Daniel Aravena ◽  
Sangho Koo ◽  
...  

External electric fields (EEFs) have proven to be very efficient in catalysing chemical reactions, even those inaccessible via wet-chemical synthesis. At the single-molecule level, oriented EEFs have been successfully used to promote in situ single-molecule reactions in the absence of chemical catalysts. Here, we elucidate the effect of an EEFs on the structure and conductance of a molecular junction. Employing scanning tunnelling microscopy break junction (STM-BJ) experiments, we form and electrically characterize single-molecule junctions of two tetramethyl carotene isomers. Two discrete conductance signatures show up more prominently at low and high applied voltages which are univocally ascribed to the trans and cis isomers of the carotenoid, respectively. The difference in conductance between both cis-/trans- isomers is in concordance with previous predictions considering π-quantum interference due to the presence of a single gauche defect in the trans isomer. Electronic structure calculations suggest that the electric field polarizes the molecule and mixes the excited states. The mixed states have a (spectroscopically) allowed transition and, therefore, can both promote the cis-isomerization of the molecule and participate in electron transport. Our work opens new routes for the in situ control of isomerisation reactions in single-molecule contacts.


Sign in / Sign up

Export Citation Format

Share Document