scholarly journals Molecular-Level Insight into the Interfacial Reactivity and Ionic Conductivity of a Li-Argyrodite Li6PS5Cl Solid Electrolyte at Bare and Coated Li-Metal Anodes

Author(s):  
Andrey Golov ◽  
Javier Carrasco
2019 ◽  
Vol 11 (31) ◽  
pp. 27890-27896 ◽  
Author(s):  
Yulong Liu ◽  
Jingru Liu ◽  
Qian Sun ◽  
Dawei Wang ◽  
Keegan R. Adair ◽  
...  

Author(s):  
Tian Wu ◽  
Danyan Hu ◽  
Qingfen Wang

Abstract Background Noni (Morinda citrifolia Linn.) is a tropical tree that bears climacteric fruit. Previous observations and research have shown that the second day (2 d) after harvest is the most important demarcation point when the fruit has the same appearance as the freshly picked fruit (0 d); however, they are beginning to become water spot appearance. We performed a conjoint analysis of metabolome and transcriptome data for noni fruit of 0 d and 2 d to reveal what happened to the fruit at the molecular level. Genes and metabolites were annotated to KEGG pathways and the co-annotated KEGG pathways were used as a statistical analysis. Results We found 25 pathways that were significantly altered at both metabolic and transcriptional levels, including a total of 285 differentially expressed genes (DEGs) and 11 differential metabolites through an integrative analysis of transcriptomics and metabolomics. The energy metabolism and pathways originating from phenylalanine were disturbed the most. The upregulated resistance metabolites and genes implied the increase of resistance and energy consumption in the postharvest noni fruit. Most genes involved in glycolysis were downregulated, further limiting the available energy. This lack of energy led noni fruit to water spot appearance, a prelude to softening. The metabolites and genes related to the resistance and energy interacted and restricted each other to keep noni fruit seemingly hard within two days after harvest, but actually the softening was already unstoppable. Conclusions This study provides a new insight into the relationship between the metabolites and genes of noni fruit, as well as a foundation for further clarification of the post-ripening mechanism in noni fruit.


Nanoscale ◽  
2021 ◽  
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

As flexible all-solid-state batteries are highly safe and lightweight, they can be considered as candidates for wearable energy sources. However, their performance needs to be first improved, which can be...


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 989
Author(s):  
Feihu Tan ◽  
Hua An ◽  
Ning Li ◽  
Jun Du ◽  
Zhengchun Peng

All-solid-state batteries (ASSBs) are attractive for energy storage, mainly because introducing solid-state electrolytes significantly improves the battery performance in terms of safety, energy density, process compatibility, etc., compared with liquid electrolytes. However, the ionic conductivity of the solid-state electrolyte and the interface between the electrolyte and the electrode are two key factors that limit the performance of ASSBs. In this work, we investigated the structure of a Li0.33La0.55TiO3 (LLTO) thin-film solid electrolyte and the influence of different interfaces between LLTO electrolytes and electrodes on battery performance. The maximum ionic conductivity of the LLTO was 7.78 × 10−5 S/cm. Introducing a buffer layer could drastically improve the battery charging and discharging performance and cycle stability. Amorphous SiO2 allowed good physical contact with the electrode and the electrolyte, reduced the interface resistance, and improved the rate characteristics of the battery. The battery with the optimized interface could achieve 30C current output, and its capacity was 27.7% of the initial state after 1000 cycles. We achieved excellent performance and high stability by applying the dense amorphous SiO2 buffer layer, which indicates a promising strategy for the development of ASSBs.


Author(s):  
Kentaro Yamamoto ◽  
Seunghoon Yang ◽  
Masakuni Takahashi ◽  
Koji Ohara ◽  
Tomoki Uchiyama ◽  
...  

Author(s):  
Diego Holanda Pereira de Souza ◽  
Kasper T. Møller ◽  
Stephen A. Moggach ◽  
Terry D Humphries ◽  
Anita D’Angelo ◽  
...  

Metal boron-hydrogen compounds are considered as promising solid electrolyte candidates for the development of all-solid-state batteries (ASSB), owing to the high ionic conductivity exhibited by closo- and nido-boranes. In this...


Sign in / Sign up

Export Citation Format

Share Document