Multilayered Solid Polymer Electrolytes with Sacrificial Coating for Suppressing Lithium Dendrite Growth

Author(s):  
Xiaowei Li ◽  
Yongwei Zheng ◽  
William R. Fullerton ◽  
Christopher Y. Li
Author(s):  
Edward Matios ◽  
Huan Wang ◽  
Yiwen Zhang ◽  
Jianmin Luo ◽  
Chuanlong Wang ◽  
...  

Solid-state electrolytes (SSEs) can effectively address the dendrite growth and safety concerns associated with current battery technologies, but their implementation is still plagued by low ionic conductivity and high interfacial...


Author(s):  
Muhammad Irfan ◽  
Yunlong Zhang ◽  
Zeheng Yang ◽  
Jianhui Su ◽  
Weixin Zhang

Suppressing the anionic mobility in solid polymer electrolytes (SPEs) is crucial to mitigate the ionic conductivity, internal cell polarization and performance, and thus upgrading the stability and cycle life of...


2021 ◽  
Author(s):  
Qian Cheng ◽  
yupeng miao ◽  
Zhe Liu ◽  
James Borovilas ◽  
Hanrui Zhang ◽  
...  

Ion depletion in liquid electrolytes is widely accepted to promote dendrite growth in metal anodes due to enhanced local electrical field and magnified concentration fluctuation at the electrode/electrolyte interface. Here we report unexpected opposite behaviors in solid polymer electrolytes, showing that ion depletion leads to uniform lithium deposition. Such stabilization originates from ion depletion-induced phase transformation, which forms a new PEO-rich but salt/plasticizer-poor phase at the lithium/electrolyte interface, as unveiled by stimulated Raman scattering microscopy. This new phase leads a significantly higher Young’s modulus (~2-3 GPa) than the bulk polymer electrolyte (< 10 MPa), which effectively suppresses dendrite growth. Further battery tests show that LiFePO<sub>4</sub>/PEO/Li cells with such ion depletion-induced phase transformations can be reversibly cycled for 200 times, while cells without such transformation fail within only ten cycles, demonstrating the effectiveness of this strategy to stabilize the lithium anode.


2021 ◽  
Author(s):  
Qian Cheng ◽  
yupeng miao ◽  
Zhe Liu ◽  
James Borovilas ◽  
Hanrui Zhang ◽  
...  

Ion depletion in liquid electrolytes is widely accepted to promote dendrite growth in metal anodes due to enhanced local electrical field and magnified concentration fluctuation at the electrode/electrolyte interface. Here we report unexpected opposite behaviors in solid polymer electrolytes, showing that ion depletion leads to uniform lithium deposition. Such stabilization originates from ion depletion-induced phase transformation, which forms a new PEO-rich but salt/plasticizer-poor phase at the lithium/electrolyte interface, as unveiled by stimulated Raman scattering microscopy. This new phase leads a significantly higher Young’s modulus (~2-3 GPa) than the bulk polymer electrolyte (< 10 MPa), which effectively suppresses dendrite growth. Further battery tests show that LiFePO<sub>4</sub>/PEO/Li cells with such ion depletion-induced phase transformations can be reversibly cycled for 200 times, while cells without such transformation fail within only ten cycles, demonstrating the effectiveness of this strategy to stabilize the lithium anode.


2017 ◽  
Vol 46 (3) ◽  
pp. 797-815 ◽  
Author(s):  
Heng Zhang ◽  
Chunmei Li ◽  
Michal Piszcz ◽  
Estibaliz Coya ◽  
Teofilo Rojo ◽  
...  

Single lithium-ion conducting solid polymer electrolytes (SLIC-SPEs), with a high lithium-ion transference number, the absence of the detrimental effect of anion polarization, and low dendrite growth rate, could be an excellent choice of safe electrolyte materials for lithium batteries in the future.


Author(s):  
Jijeesh Nair ◽  
◽  
Matteo Destro ◽  
Claudio Gerbaldi ◽  
Federico Bella

2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


Author(s):  
Tae Hwa Jeon ◽  
Bupmo Kim ◽  
Chuhyung Kim ◽  
Chuan Xia ◽  
Haotian Wang ◽  
...  

An external bias-free photoelectrochemical system containing solid polymer electrolytes achieves efficient and durable synthesis of pure (electrolyte-free) aqueous H2O2 solution.


2021 ◽  
Vol 11 (4) ◽  
pp. 1561
Author(s):  
Gabrielle Foran ◽  
Nina Verdier ◽  
David Lepage ◽  
Arnaud Prébé ◽  
David Aymé-Perrot ◽  
...  

Solid polymer electrolytes have been widely proposed for use in all solid-state lithium batteries. Advantages of polymer electrolytes over liquid and ceramic electrolytes include their flexibility, tunability and easy processability. An additional benefit of using some types of polymers for electrolytes is that they can be processed without the use of solvents. An example of polymers that are compatible with solvent-free processing is epoxide-containing precursors that can form films via the lithium salt-catalyzed epoxide ring opening polymerization reaction. Many polymers with epoxide functional groups are liquid under ambient conditions and can be used to directly dissolve lithium salts, allowing the reaction to be performed in a single reaction vessel under mild conditions. The existence of a variety of epoxide-containing polymers opens the possibility for significant customization of the resultant films. This review discusses several varieties of epoxide-based polymer electrolytes (polyethylene, silicone-based, amine and plasticizer-containing) and to compare them based on their thermal and electrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document