Intrinsic Antibacterial and Conductive Hydrogels Based on the Distinct Bactericidal Effect of Polyaniline for Infected Chronic Wound Healing

Author(s):  
Can Wu ◽  
Lu Shen ◽  
Yuhui Lu ◽  
Cheng Hu ◽  
Zhen Liang ◽  
...  
Author(s):  
Margaret O. Ilomuanya ◽  
Prosper S. Okafor ◽  
Joyce N. Amajuoyi ◽  
John C. Onyejekwe ◽  
Omotunde O. Okubanjo ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 349
Author(s):  
Anam Razzaq ◽  
Zaheer Ullah Khan ◽  
Aasim Saeed ◽  
Kiramat Ali Shah ◽  
Naveed Ullah Khan ◽  
...  

Diabetic wound infections caused by conventional antibiotic-resistant Staphylococcus aureus strains are fast emerging, leading to life-threatening situations (e.g., high costs, morbidity, and mortality) associated with delayed healing and chronic inflammation. Electrospinning is one of the most widely used techniques for the fabrication of nanofibers (NFs), induced by a high voltage applied to a drug-loaded polymer solution. Particular attention is given to electrospun NFs for pharmaceutical applications (e.g., original drug delivery systems) and tissue regeneration (e.g., as tissue scaffolds). However, there is a paucity of reports related to their application in diabetic wound infections. Therefore, we prepared eco-friendly, biodegradable, low-immunogenic, and biocompatible gelatin (GEL)/polyvinyl alcohol (PVA) electrospun NFs (BNFs), in which we loaded the broad-spectrum antibiotic cephradine (Ceph). The resulting drug-loaded NFs (LNFs) were characterized physically using ultraviolet-visible (UV-Vis) spectrophotometry (for drug loading capacity (LC), drug encapsulation efficiency (EE), and drug release kinetics determination), thermogravimetric analysis (TGA) (for thermostability evaluation), scanning electron microscopy (SEM) (for surface morphology analysis), and Fourier-transform infrared spectroscopy (FTIR) (for functional group identification). LNFs were further characterized biologically by in-vitro assessment of their potency against S. aureus clinical strains (N = 16) using the Kirby–Bauer test and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, by ex-vivo assessment to evaluate their cytotoxicity against primary human epidermal keratinocytes using MTT assay, and by in-vivo assessment to estimate their diabetic chronic wound-healing efficiency using NcZ10 diabetic/obese mice (N = 18). Thin and uniform NFs with a smooth surface and standard size (<400 nm) were observed by SEM at the optimized 5:5 (GEL:PVA) volumetric ratio. FTIR analyses confirmed the drug loading into BNFs. Compared to free Ceph, LNFs were significantly more thermostable and exhibited sustained/controlled Ceph release. LNFs also exerted a significantly stronger antibacterial activity both in-vitro and in-vivo. LNFs were significantly safer and more efficient for bacterial clearance-induced faster chronic wound healing. LNF-based therapy could be employed as a valuable dressing material to heal S. aureus-induced chronic wounds in diabetic subjects.


2020 ◽  
Vol 141 ◽  
pp. 109720
Author(s):  
Mengru Pang ◽  
Zexin Yao ◽  
Caihong Chen ◽  
Xiaoxuan Lei ◽  
Biao Cheng

2020 ◽  
pp. 196-198
Author(s):  
H Parkar ◽  
AD Cromarty

Healthcare professionals in general practice are tasked with treatment and management of wounds on a daily basis. The prognoses of these wounds are directly affected by the ability of the clinician to assess these wounds according to several parameters, including the wound type and the features which determine whether a wound is acute or transforming to a chronic wound. This can be achieved by proper and continuous wound assessment, which should guide wound treatment strategies to ensure optimal wound healing and prevent progression to complicated wounds.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3116
Author(s):  
Thien Do ◽  
Tien Nguyen ◽  
Minh Ho ◽  
Nghi Nguyen ◽  
Thai Do ◽  
...  

(1) Background: Wounds with damages to the subcutaneous are difficult to regenerate because of the tissue damages and complications such as bacterial infection. (2) Methods: In this study, we created burn wounds on pigs and investigated the efficacy of three biomaterials: polycaprolactone-gelatin-silver membrane (PCLGelAg) and two commercial burn dressings, Aquacel® Ag and UrgoTulTM silver sulfadiazine. In vitro long-term antibacterial property and in vivo wound healing performance were investigated. Agar diffusion assays were employed to evaluate bacterial inhibition at different time intervals. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill assays were used to compare antibacterial strength among samples. Second-degree burn wounds in the pig model were designed to evaluate the efficiency of all dressings in supporting the wound healing process. (3) Results: The results showed that PCLGelAg membrane was the most effective in killing both Gram-positive and Gram-negative bacteria bacteria with the lowest MBC value. All three dressings (PCLGelAg, Aquacel, and UrgoTul) exhibited bactericidal effect during the first 24 h, supported wound healing as well as prevented infection and inflammation. (4) Conclusions: The results suggest that the PCLGelAg membrane is a practical solution for the treatment of severe burn injury and other infection-related skin complications.


2020 ◽  
Vol 31 (6) ◽  
pp. 639-648 ◽  
Author(s):  
Christina Dai ◽  
Shawn Shih ◽  
Amor Khachemoune

Pharmaceutics ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 275 ◽  
Author(s):  
Nathan A. Rohner ◽  
Dung Nguyen ◽  
Horst A. von Recum

For many chronic fibrotic conditions, there is a need for local, sustained antifibrotic drug delivery. A recent trend in the pharmaceutical industry is the repurposing of approved drugs. This paper investigates drugs that are classically used for anthelmintic activity (pyrvinium pamoate (PYR)), inhibition of adrenal steroidgenesis (metyrapone (MTP)), bactericidal effect (rifampicin (RIF), and treating iron/aluminum toxicity (deferoxamine mesylate (DFOA)), but are also under investigation for their potential positive effect in wound healing. In this role, they have not previously been tested in a localized delivery system suitable for obtaining the release for the weeks-to-months timecourse needed for wound resolution. Herein, two cyclodextrin-based polymer systems, disks and microparticles, are demonstrated to provide the long-term release of all four tested non-conventional wound-healing drugs for up to 30 days. Higher drug affinity binding, as determined from PyRx binding simulations and surface plasmon resonance in vitro, corresponded with extended release amounts, while drug molecular weight and solubility correlated with the improved drug loading efficiency of cyclodextrin polymers. These results, combined, demonstrate that leveraging affinity interactions, in combination with drug choice, can extend the sustained release of drugs with an alternative, complimentary action to resolve wound-healing and reduce fibrotic processes.


Sign in / Sign up

Export Citation Format

Share Document