Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of P′2-Type Na2/3MnO2: Experimental and Theoretical Studies

2018 ◽  
Vol 10 (48) ◽  
pp. 40978-40984 ◽  
Author(s):  
Ji Ung Choi ◽  
Yun Ji Park ◽  
Jae Hyeon Jo ◽  
Liang-Yin Kuo ◽  
Payam Kaghazchi ◽  
...  
1987 ◽  
Vol 104 ◽  
Author(s):  
H. J. Von Bardeleben ◽  
D. Stievemard

ABSTRACTThe arsenic antisite-arsenic interstitial pair model for the stable configuration of the EL2 defect in GaAs has stimulated new experimental and theoretical studies, the results of which lead to additional support for this model. Recent theoretical studies, taking into account the effect of a Jahn Teller distortion of the T2 Asi levels have given an insight into the stability and the electronic structure of the defect pair. Further, ODENDOR studies have directly confirmed this model and allowed one to specify the lattice location and the charge state of the Asi ion. The pair structure of this defect implies a reconsideration of the charge states of the EL2 defect, as well as the origin of the optical absorption bands for which transitions on the Asi ion and intracenter bands have also to be considered. The model leads further to a description of the metastable configuration : an arsenic molecule at the gallium vacancy site, the electronic structure of which is calculated. The vacancy related defects, known from electron irradiation studies, are not detected in LEC grown GaAs as native defects.


2021 ◽  
Vol 490 ◽  
pp. 229519
Author(s):  
Renier Arabolla Rodríguez ◽  
Nelcy Della Santina Mohallem ◽  
Manuel Avila Santos ◽  
Demetrio A. Sena Costa ◽  
Luciano Andrey Montoro ◽  
...  

2015 ◽  
Vol 17 (48) ◽  
pp. 32204-32210 ◽  
Author(s):  
Pallavi Ghalsasi ◽  
Nandini Garg ◽  
M. N. Deo ◽  
Alka Garg ◽  
Hemant Mande ◽  
...  

The captions for pressure values are not centered below each micrograph.


2019 ◽  
Vol 7 (23) ◽  
pp. 14169-14179 ◽  
Author(s):  
Maider Zarrabeitia ◽  
Elena Gonzalo ◽  
Marta Pasqualini ◽  
Matteo Ciambezi ◽  
Oier Lakuntza ◽  
...  

The cycling stability explained through the Ti doping role on the Jahn Teller distortion.


2020 ◽  
Author(s):  
Marta L. Vidal ◽  
Michael Epshtein ◽  
Valeriu Scutelnic ◽  
Zheyue Yang ◽  
Tian Xue ◽  
...  

We report a theoretical investigation and elucidation of the x-ray absorption spectra of neutral benzene and of the benzene cation. The generation of the cation by multiphoton ultraviolet (UV) ionization as well as the measurement of<br>the carbon K-edge spectra of both species using a table-top high-harmonic generation (HHG) source are described in the companion experimental paper [M. Epshtein et al., J. Phys.<br>Chem. A., submitted. Available on ChemRxiv]. We show that the 1sC -> pi transition serves as a sensitive signature of the transient cation formation, as it occurs outside of the spectral window of the parent neutral species. Moreover, the presence<br>of the unpaired (spectator) electron in the pi-subshell of the cation and the high symmetry of the system result in significant differences relative to neutral benzene in the spectral features associated with the 1sC ->pi* transitions. High-level calculations using equation-of-motion coupled-cluster theory provide the interpretation of the experimental spectra and insight into the electronic structure of benzene and its cation.<br>The prominent split structure of the 1sC -> pi* band of the cation is attributed to the interplay between the coupling of the core -> pi* excitation with the unpaired electron<br>in the pi-subshell and the Jahn-Teller distortion. The calculations attribute most of<br>the splitting (~1-1.2 eV) to the spin coupling, which is visible already at the Franck-Condon structure, and estimate the additional splitting due to structural relaxation to<br>be around ~0.1-0.2 eV. These results suggest that x-ray absorption with increased resolution might be able to disentangle electronic and structural aspects of the Jahn-Teller<br>effect in benzene cation.<br>


1995 ◽  
Vol 60 (9) ◽  
pp. 1429-1434
Author(s):  
Martin Breza

Using semiempirical CNDO-UHF method the adiabatic potential surface of 2[Cu(OH)6]4- complexes is investigated. The values of vibration and vibronic constants for Eg - (a1g + eg) vibronic interaction attain extremal values for the optimal O-H distance. The Jahn-Teller distortion decreases with increasing O-H distance. The discrepancy between experimentally observed elongated bipyramid of [Cu(OH)6]4- in Ba2[Cu(OH)6] and the compressed one obtained by quantum-chemical calculation is explainable by hydrogen bonding of the axial hydroxyl group.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Taishi Chen ◽  
Takahiro Tomita ◽  
Susumu Minami ◽  
Mingxuan Fu ◽  
Takashi Koretsune ◽  
...  

AbstractThe recent discoveries of strikingly large zero-field Hall and Nernst effects in antiferromagnets Mn3X (X = Sn, Ge) have brought the study of magnetic topological states to the forefront of condensed matter research and technological innovation. These effects are considered fingerprints of Weyl nodes residing near the Fermi energy, promoting Mn3X (X = Sn, Ge) as a fascinating platform to explore the elusive magnetic Weyl fermions. In this review, we provide recent updates on the insights drawn from experimental and theoretical studies of Mn3X (X = Sn, Ge) by combining previous reports with our new, comprehensive set of transport measurements of high-quality Mn3Sn and Mn3Ge single crystals. In particular, we report magnetotransport signatures specific to chiral anomalies in Mn3Ge and planar Hall effect in Mn3Sn, which have not yet been found in earlier studies. The results summarized here indicate the essential role of magnetic Weyl fermions in producing the large transverse responses in the absence of magnetization.


Sign in / Sign up

Export Citation Format

Share Document