Self-Healable Polyurethane Elastomer Based on Dual Dynamic Covalent Chemistry Using Diels–Alder “Click” and Disulfide Metathesis Reactions

2021 ◽  
Vol 3 (2) ◽  
pp. 847-856
Author(s):  
Prasanta Kumar Behera ◽  
Sagar Kumar Raut ◽  
Prantik Mondal ◽  
Shrabana Sarkar ◽  
Nikhil K. Singha
2017 ◽  
Vol 12 (5) ◽  
pp. 1934578X1701200
Author(s):  
Silvia Roscales ◽  
Joaquín Plumet

Metathesis reactions is firmly established as a valuable synthetic tool in organic chemistry, clearly comparable with the venerable Diels-Alder and Wittig reactions and, more recently, with the metal-catalyzed cross-coupling reactions. Metathesis reactions can be considered as a fascinating synthetic methodology, allowing different variants regarding substrate (alkene and alkyne metathesis) and type of metathetical reactions. On the other hand, tandem metathesis reactions such Ring Rearrangement Metathesis (RRM) and the coupling of metathesis reaction with other reactions of alkenes such as Diels-Alder or Heck reactions, makes metathesis one of the most powerful and reliable synthetic procedure. In particular, Ring-Rearrangement Metathesis (RRM) refers to the combination of several metathesis transformations into a domino process such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) and ROM-cross metathesis (CM) in a one-pot operation. RRM delivers complex frameworks that are difficult to assemble by conventional methods constitutingan atom economic process. RRM is applicable to mono- and polycyclic systems of varying ring sizes such as cyclopropene, cyclobutene, cyclopentene, cyclohexene, pyran systems, bicyclo[2.2.1]heptene derivatives, bicyclo[2.2.2]octene derivatives, bicyclo[3.2.1]octene derivatives and bicyclo[3.2.1]octene derivatives. In this review our attention has focused on the RRM reactions in 7-oxabicyclo[2.2.1]heptene derivatives and on their application in the synthesis of natural products or significant subunits of them.


Synlett ◽  
1989 ◽  
Vol 1989 (01) ◽  
pp. 30-32
Author(s):  
Thomas V. Lee ◽  
Alistair J. Leigh ◽  
Christopher B. Chapleo

2009 ◽  
Author(s):  
Pedro Mancini ◽  
Maria Kneeteman ◽  
Claudia Della Rosa
Keyword(s):  

2013 ◽  
Vol 1 ◽  
Author(s):  
Silvia Reboredo ◽  
Alejandro Parra ◽  
José Alemán
Keyword(s):  

2020 ◽  
Author(s):  
Radu Talmazan ◽  
Klaus R. Liedl ◽  
Bernhard Kräutler ◽  
Maren Podewitz

We analyze the mechanism of the topochemically controlled difunctionalization of C60 and anthracene, where an anthracene molecule is transferred from one C60 monoadduct to another one under exclusive formation of equal amounts of C60 and the difficult to make antipodal C60 bisadduct. Our herein disclosed dispersion corrected DFT studies show the anthracene transfer to take place in a synchronous retro Diels-Alder/Diels-Alder reaction: an anthracene molecule dissociates from one fullerene under formation of an intermediate, while already undergoing stabilizing interactions with both neighboring fullerenes, facilitating the reaction kinetically. In the intermediate, a planar anthracene molecule is sandwiched between two neighboring fullerenes and forms equally strong "double-decker" type pi-pi stacking interactions with both of these fullerenes. Analysis with the distorsion interaction model shows that the anthracene unit of the intermediate is almost planar with minimal distorsions. This analysis sheds light on the existence of noncovalent interactions engaging both faces of a planar polyunsaturated ring and two convex fullerene surfaces in an unprecedented 'inverted sandwich' structure. Hence, it sheds light on new strategies to design functional fullerene based materials.<br>


2018 ◽  
Author(s):  
Haley Albright ◽  
Paul S. Riehl ◽  
Christopher C. McAtee ◽  
Jolene P. Reid ◽  
Jacob R. Ludwig ◽  
...  

<div>Catalytic carbonyl-olefin metathesis reactions have recently been developed as a powerful tool for carbon-carbon bond</div><div>formation. However, currently available synthetic protocols rely exclusively on aryl ketone substrates while the corresponding aliphatic analogs remain elusive. We herein report the development of Lewis acid-catalyzed carbonyl-olefin ring-closing metathesis reactions for aliphatic ketones. Mechanistic investigations are consistent with a distinct mode of activation relying on the in situ formation of a homobimetallic singly-bridged iron(III)-dimer as the active catalytic species. These “superelectrophiles” function as more powerful Lewis acid catalysts that form upon association of individual iron(III)-monomers. While this mode of Lewis acid activation has previously been postulated to exist, it has not yet been applied in a catalytic setting. The insights presented are expected to enable further advancement in Lewis acid catalysis by building upon the activation principle of “superelectrophiles” and broaden the current scope of catalytic carbonyl-olefin metathesis reactions.</div>


2019 ◽  
Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.


Sign in / Sign up

Export Citation Format

Share Document