polyurethane elastomer
Recently Published Documents


TOTAL DOCUMENTS

444
(FIVE YEARS 112)

H-INDEX

40
(FIVE YEARS 6)

Author(s):  
Juan Ye ◽  
Guanghong Lin ◽  
Ziqian Lin ◽  
Haoyu Deng ◽  
Junjie Huang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7487
Author(s):  
Yuhang Dong ◽  
Dexian Yin ◽  
Linhui Deng ◽  
Renwei Cao ◽  
Shikai Hu ◽  
...  

Sound absorbing materials combining millable polyurethane elastomer (MPU) and eucommia ulmoides rubber (EUG) were successfully fabricated via a physical blending process of EUG and MPU. The microstructure, crystallization performances, damping, mechanical and sound absorption properties of the prepared MPU/EUG composites were investigated systematically. The microstructure surface of various MPU/EUG composites became rough and cracked by the gradual incorporation of EUG, resulting in a deteriorated compatibility between EUG and MPU. With the increase of EUG content, the storage modulus (E’) of various MPU/EUG composites increased in a temperature range of −50 °C to 40 °C and their loss factor (tanδ) decreased significantly, including a reduction of the tanδ of MPU/EUG (70/30) composites from 0.79 to 0.64. Specifically, the addition of EUG sharply improved the sound absorption performances of various MPU/EUG composites in a frequency range of 4.5 kHz–8 kHz. Compared with that of pure MPU, the sound absorption coefficient of the MPU/EUG (70/30) composite increased 52.2% at a pressure of 0.1 MPa and 16.8% at a pressure of 4 MPa, indicating its outstanding sound absorption properties.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6195
Author(s):  
Feng Qi ◽  
Zhuoyu Zheng ◽  
Zehui Xiang ◽  
Biao Zhang ◽  
Fugang Qi ◽  
...  

Polyurethane elastomer (PUE) has attracted much attention in impact energy absorption due to its impressive toughness and easy processability. However, the lack of continuous impact resistance limits its wider application. Here, an amino-siloxane (APTES) grafted WS2-coated MWCNTs (A-WS2@MWCNTs) filler was synthesized, and A-WS2@MWCNTs/PUE was prepared by using the filler. Mechanical tests and impact damage characterization of pure PUE and composite PUE were carried out systematically. Compared with pure PUE, the static compressive strength and dynamic yield stress of A-WS2@MWCNTs/PUE are increased by 144.2% and 331.7%, respectively. A-WS2@MWCNTs/PUE remains intact after 10 consecutive impacts, while the pure PUE appears serious damage after only a one-time impact. The improvement of mechanical properties of A-WS2@MWCNTs/PUE lies in the interfacial interaction and synergy of composite fillers. Microscopic morphology observation and damage analysis show that the composite nanofiller has suitable interfacial compatibility with the PUE matrix and can inhibit crack growth and expansion. Therefore, this experiment provides an experimental and theoretical basis for the preparation of PUE with excellent impact resistance, which will help PUE to be more widely used in the protection field.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3436
Author(s):  
Muhammad Shafiq ◽  
Muhammad Taqi Zahid Butt ◽  
Shahzad Maqsood Khan

This study depicts the investigations of the effect of composition of aromatic polyester polyol produced from terephthalic acid (TPA) and different concentrations of monoethylene glycol (mEG) as a chain extender on the mechanical properties of polyurethane (PU) elastomer. Aromatic polyester polyols are prepared via the poly-esterification of adipic acid, terephthalic acid, catalyst, and mono ethylene glycol; while a polyurethane elastomer is formulated via the pre-polymerization of polyol with pure monomeric Methylene diphenyl diisocyanate (MDI.) Mechanical properties of polyurethane elastomers are examined, such as hardness via shore A hardness, apparent density via ASTM (American Society for Testing and Materials) D1622–08, and abrasion wear resistance via a Deutches Institut fur Normung (DIN) abrasion wear resistance tester. Structural properties are investigated through Fourier-transform infrared spectroscopy (FTIR) analysis. Results reveal that the shore A hardness of the PU elastomer increases with an increasing concentration of mEG from 4g to 12g. Nevertheless, the elastomer’s density depicts a reduction with an increasing extender content. The abrasion wear resistance of polyurethane, however, increases with an increasing concentration of glycol. A structural analysis through FTIR confirms the formation of polyurethane elastomer through the characteristic peaks demonstrated.


Sign in / Sign up

Export Citation Format

Share Document