scholarly journals Thermochromic Multicolored Photonic Coatings with Light Polarization- and Structural Color-Dependent Changes

Author(s):  
Weixin Zhang ◽  
Albertus P.H.J. Schenning ◽  
Augustinus J.J. Kragt ◽  
Guofu Zhou ◽  
Laurens T. de Haan
Author(s):  
Wenqi Yang ◽  
Shinya Yamamoto ◽  
Keiichiro Sueyoshi ◽  
Takumi Inadomi ◽  
Riki Kato ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Wenqi Yang ◽  
Shinya Yamamoto ◽  
Keiichiro Sueyoshi ◽  
Takumi Inadomi ◽  
Riki Kato ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2103697
Author(s):  
Hongkyu Eoh ◽  
Youngdoo Jung ◽  
Chanho Park ◽  
Chang Eun Lee ◽  
Tae Hyun Park ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Mingjie Chen ◽  
Long Wen ◽  
Dahui Pan ◽  
David Cumming ◽  
Xianguang Yang ◽  
...  

Pixel scaling effects have been a major issue for the development of high-resolution color image sensors due to the reduced photoelectric signal and the color crosstalk. Various structural color techniques...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian Wang ◽  
Asuka Miura ◽  
Rajkumar Modak ◽  
Yukiko K. Takahashi ◽  
Ken-ichi Uchida

AbstractThe introduction of spin caloritronics into thermoelectric conversion has paved a new path for versatile energy harvesting and heat sensing technologies. In particular, thermoelectric generation based on the anomalous Nernst effect (ANE) is an appealing approach as it shows considerable potential to realize efficient, large-area, and flexible use of heat energy. To make ANE applications viable, not only the improvement of thermoelectric performance but also the simplification of device structures is essential. Here, we demonstrate the construction of an anomalous Nernst thermopile with a substantially enhanced thermoelectric output and simple structure comprising a single ferromagnetic material. These improvements are achieved by combining the ANE with the magneto-optical recording technique called all-optical helicity-dependent switching of magnetization. Our thermopile consists only of Co/Pt multilayer wires arranged in a zigzag configuration, which simplifies microfabrication processes. When the out-of-plane magnetization of the neighboring wires is reversed alternately by local illumination with circularly polarized light, the ANE-induced voltage in the thermopile shows an order of magnitude enhancement, confirming the concept of a magneto-optically designed anomalous Nernst thermopile. The sign of the enhanced ANE-induced voltage can be controlled reversibly by changing the light polarization. The engineering concept demonstrated here promotes effective utilization of the characteristics of the ANE and will contribute to realizing its thermoelectric applications.


2010 ◽  
Author(s):  
Hyoki Kim ◽  
Jianping Ge ◽  
Junhoi Kim ◽  
Sung-Eun Choi ◽  
Hosuk Lee ◽  
...  

2020 ◽  
Vol 10 (6) ◽  
pp. 780-787
Author(s):  
Hongyue Gao ◽  
Suna Li ◽  
Jicheng Liu ◽  
Wen Zhou ◽  
Fan Xu ◽  
...  

In this paper, we studied the holographic properties of liquid crystal (LC) thin film doped with carbon dots (CDs) which can be used as real-time holographic display screen. The maximum value of diffraction efficiency can reach up to 30% by using a low applied electric field 0.2 V/μm. Holograms in the LC film can be dynamically formed and self-erased. The hologram build-up time and the hologram self-erasure time in the material is fast enough to realize video refresh rate. In addition, the forming process of hologram was studied. The holographic diffraction efficiency was measured depending on the intensity of recording light, applied electric field, the intensity of readout light, and readout light polarization direction. Triple enhancement of the diffraction efficiency value by the modulation of voltage under the condition of low recording energy is presented. Therefore, we develop an easy way to obtain real-time dynamic holographic red, green and blue displays with high diffraction efficiency, which allow the LC film doped with CDs to be used as a holographic 3D display screen.


Sign in / Sign up

Export Citation Format

Share Document