3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis

ACS Catalysis ◽  
2021 ◽  
pp. 8837-8846
Author(s):  
Meiling Xiao ◽  
Jianbing Zhu ◽  
Shuang Li ◽  
Gaoran Li ◽  
Wenwen Liu ◽  
...  

2005 ◽  
Vol 220 (12/2005) ◽  
Author(s):  
Thomas Proffen ◽  
Katharine L. Page ◽  
Sylvia E. McLain ◽  
Bjørn Clausen ◽  
Timothy W. Darling ◽  
...  


2014 ◽  
Vol 30 (S1) ◽  
pp. S2-S8 ◽  
Author(s):  
Andrea Bernasconi ◽  
Jonathan Wright ◽  
Nicholas Harker

ID11 is a multi-purpose high-energy beamline at the European Synchrotron Radiation Facility (ESRF). Owing to the high-energy X-ray source (up to 140 keV) and flexible, high-precision sample mounting which allows small sample–detector distances to be achieved, experiments such as total scattering in transmission geometry are possible. This permits the exploration of a wide Q range and so provides high real-space resolution. A range of samples (glasses and crystalline powders) have been measured at 78 keV, first putting the detector as close as possible to the sample (~10 cm), and then moving it vertically and laterally with respect to the beam in order to have circular and quarter circle sections of diffraction rings, with consequent QMAX at the edge of the detector of about 16 and 28 Å−1, respectively. Data were integrated using FIT2D, and then normalized and corrected with PDFgetX3. Results have been compared to see the effects of Q-range and counting statistics on the atomic pair distribution functions of the different samples. A Q of at least 20 Å−1 was essential to have sufficient real-space resolution for both type of samples while statistics appeared more important for glass samples rather than for crystalline samples.



1998 ◽  
Vol 54 (6) ◽  
pp. 750-765 ◽  
Author(s):  
S. Teslic ◽  
T. Egami

The atomic structure of lead zirconate, PbZrO3 (PZ), was studied using Rietveld refinement and atomic pair distribution function analysis of pulsed neutron powder diffraction data for the antiferroelectric, intermediate and paraelectric phases. The symmetry of PZ at T = 20 K in the antiferroelectric phase was determined to be Pbam. The structure was characterized by distortions of the ZrO6 octahedra which are smaller than in previous studies. Locally correlated displacements of Pb in the c direction develop with increasing temperature. The average magnitude was 0.06 Å at room temperature, 0.14 Å at T = 473 K and 0.20 Å in the intermediate phase at T = 508 K. The intermediate phase was characterized by in-plane antiferroelectric Pb displacements which produce 1\over 2{110} superlattice diffraction peaks. Above 473 K the local structure of PZ remains largely unchanged, in spite of the transitions in the long-range order from the antiferroelectric to the intermediate and to the paraelectric phases.



2017 ◽  
Vol 96 (8) ◽  
Author(s):  
Nicholas F. Quackenbush ◽  
Hanjong Paik ◽  
Megan E. Holtz ◽  
Matthew J. Wahila ◽  
Jarrett A. Moyer ◽  
...  
Keyword(s):  


2011 ◽  
Vol 84 (13) ◽  
Author(s):  
Christopher L. Farrow ◽  
Margaret Shaw ◽  
Hyunjeong Kim ◽  
Pavol Juhás ◽  
Simon J. L. Billinge


RSC Advances ◽  
2015 ◽  
Vol 5 (12) ◽  
pp. 8895-8902 ◽  
Author(s):  
E.-E. Bendeif ◽  
A. Gansmuller ◽  
K.-Y. Hsieh ◽  
S. Pillet ◽  
Th. Woike ◽  
...  

Total X-ray scattering coupled to atomic pair distribution function analysis (PDF) and solid state NMR allowed the identification and structural characterisation of isolated molecules and nanocrystals of sodium nitroprusside confined in mesoporous silica.



Sign in / Sign up

Export Citation Format

Share Document