scholarly journals Distinct Binding Mechanisms for Allosteric Sodium Ion in Cannabinoid Receptors

Author(s):  
Soumajit Dutta ◽  
Balaji Selvam ◽  
Diwakar Shukla
ACS Omega ◽  
2021 ◽  
Author(s):  
Dayton G. Kizzire ◽  
Alexander M. Richter ◽  
David P. Harper ◽  
David J. Keffer

Author(s):  
Shaohua Lu ◽  
Weidong Hu ◽  
Xiaojun Hu

Due to their low cost and improved safety compared to lithium-ion batteries, sodium-ion batteries have attracted worldwide attention in recent decades.


2004 ◽  
Vol 29 (05) ◽  
Author(s):  
S Engeli ◽  
M Feldpausch ◽  
K Gorzelniak ◽  
J Janke ◽  
FC Luft ◽  
...  

2020 ◽  
Author(s):  
Theodosios Famprikis ◽  
O. Ulas Kudu ◽  
James Dawson ◽  
Pieremanuele Canepa ◽  
François Fauth ◽  
...  

<div> <p>Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na<sub>3</sub>PS<sub>4</sub> are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg, pair distribution function), spectroscopy (impedance, Raman, NMR, INS) and <i>ab-initio</i> simulations aimed at elucidating the synthesis-property relationships in Na<sub>3</sub>PS<sub>4</sub>. We consolidate previously reported interpretations about the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na<sup>+</sup> migration in Na<sub>3</sub>PS<sub>4</sub>, which is ~30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na<sub>3</sub>PS<sub>4</sub> to ~10<sup>-4</sup> S/cm can be reproduced by applying external pressure on a sample from conventional high temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain and activation volume.</p> </div>


2020 ◽  
Author(s):  
Marvin Kraft ◽  
Lara Gronych ◽  
Theodosios Famprikis ◽  
Saneyuki Ohno ◽  
Wolfgang Zeier

<p>Sulfidic sodium ion conductors are currently investigated for the possible use in all-solid-state sodium ion batteries. The design of high performing electrolytes in terms of temperature-dependent ionic transport is based upon the fundamental understanding of structure – transport relationships within the given structural phase boundaries inherent to the investigated materials class. In this work, the Na<sup>+</sup> superionic structural family of Na<sub>11</sub>Sn<sub>2</sub>PS<sub>12</sub> is explored by using the systematic antimony substitution with phosphorous in Na<sub>11+<i>x</i></sub>Sn<sub>2+<i>x</i></sub>(Sb<sub>1-<i>y</i></sub>P<i><sub>y</sub></i>)<sub>1-<i>x</i></sub>S<sub>12</sub>. A combination of Rietveld refinements against X-ray synchrotron diffraction data with electrochemical impedance spectroscopy is used to monitor the changes in the anionic framework, the Na<sup>+</sup> substructure and the ionic transport. A new simplified descriptor for the average Na<sup>+</sup> diffusion pathways, the average Na<sup>+</sup> polyhedral volume is introduced, which is used to correlate the contraction of the overall lattice and the found activation barriers in the system. This study exemplifies how substitution affects diffusion pathways in ionic conductors and widens the knowledge about the related structural motifs and their influence on the ionic transport in this novel class of ionic conductors.</p>


2019 ◽  
Author(s):  
Prasanth Babu Ganta ◽  
Oliver Kühn ◽  
Ashour Ahmed

The phosphorus (P) immobilization and thus its availability for plants are mainly affected by the strong interaction of phosphates with soil components especially soil mineral surfaces. Related reactions have been studied extensively via sorption experiments especially by carrying out adsorption of ortho-phosphate onto Fe-oxide surfaces. But a molecular-level understanding for the P-binding mechanisms at the mineral-water interface is still lacking, especially for forest eco-systems. Therefore, the current contribution provides an investigation of the molecular binding mechanisms for two abundant phosphates in forest soils, inositol hexaphosphate (IHP) and glycerolphosphate (GP), at the diaspore mineral surface. Here a hybrid electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) based molecular dynamics simulation has been applied to explore the diaspore-IHP/GP-water interactions. The results provide evidence for the formation of different P-diaspore binding motifs involving monodentate (M) and bidentate (B) for GP and two (2M) as well as three (3M) monodentate for IHP. The interaction energy results indicated the abundance of the GP B motif compared to the M one. The IHP 3M motif has a higher total interaction energy compared to its 2M motif, but exhibits a lower interaction energy per bond. Compared to GP, IHP exhibited stronger interaction with the surface as well as with water. Water was found to play an important role in controlling these diaspore-IHP/GP-water interactions. The interfacial water molecules form moderately strong H-bonds (HBs) with GP and IHP as well as with the diaspore surface. For all the diaspore-IHP/GP-water complexes, the interaction of water with diaspore exceeds that with the studied phosphates. Furthermore, some water molecules form covalent bonds with diaspore Al atoms while others dissociate at the surface to protons and hydroxyl groups leading to proton transfer processes. Finally, the current results confirm previous experimental conclusions indicating the importance of the number of phosphate groups, HBs, and proton transfers in controlling the P-binding at soil mineral surfaces.


2019 ◽  
Author(s):  
Till Fuchs ◽  
Sean Culver ◽  
Paul Till ◽  
Wolfgang Zeier

<p>The sodium-ion conducting family of Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, with <i>Pn</i> = P, Sb, have gained interest for the use in solid-state batteries due to their high ionic conductivity. However, significant improvements to the conductivity have been hampered by the lack of aliovalent dopants that can introduce vacancies into the structure. Inspired by the need for vacancy introduction into Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, the solid solutions with WS<sub>4</sub><sup>2-</sup> introduction are explored. The influence of the substitution with WS<sub>4</sub><sup>2-</sup> for PS<sub>4</sub><sup>3-</sup> and SbS<sub>4</sub><sup>3-</sup>, respectively, is monitored using a combination of X-ray diffraction, Raman and impedance spectroscopy. With increasing vacancy concentration improvements resulting in a very high ionic conductivity of 13 ± 3 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>P<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> and 41 ± 8 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> can be observed. This work acts as a stepping-stone towards further engineering of ionic conductors using vacancy-injection via aliovalent substituents.</p>


2019 ◽  
Author(s):  
Till Fuchs ◽  
Sean Culver ◽  
Paul Till ◽  
Wolfgang Zeier

<p>The sodium-ion conducting family of Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, with <i>Pn</i> = P, Sb, have gained interest for the use in solid-state batteries due to their high ionic conductivity. However, significant improvements to the conductivity have been hampered by the lack of aliovalent dopants that can introduce vacancies into the structure. Inspired by the need for vacancy introduction into Na<sub>3</sub><i>Pn</i>S<sub>4</sub>, the solid solutions with WS<sub>4</sub><sup>2-</sup> introduction are explored. The influence of the substitution with WS<sub>4</sub><sup>2-</sup> for PS<sub>4</sub><sup>3-</sup> and SbS<sub>4</sub><sup>3-</sup>, respectively, is monitored using a combination of X-ray diffraction, Raman and impedance spectroscopy. With increasing vacancy concentration improvements resulting in a very high ionic conductivity of 13 ± 3 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>P<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> and 41 ± 8 mS·cm<sup>-1</sup> for Na<sub>2.9</sub>Sb<sub>0.9</sub>W<sub>0.1</sub>S<sub>4</sub> can be observed. This work acts as a stepping-stone towards further engineering of ionic conductors using vacancy-injection via aliovalent substituents.</p>


1997 ◽  
Vol 12 (4) ◽  
pp. 225-229
Author(s):  
Cart-in A-S. Gustavsson ◽  
Chritofer T. Lindgren ◽  
Mikael E. Lindström

Abstract The amount of lignin reacting according to the slow residual phase, i.e. the residual phase lignin, is in many perspectives an interesting issue. The purpose of the present investigation was to develop a mathematical model to show how the amount of residual phase lignin in the kraft cooking of spruce chips (Picm ahies) depends on the conditions in the earlier phases of the cook. The variables studied were hydroxide ion concentration, hydrogen sulfide ion concentration and ionic strength. The liquor-to-wood ratio during pulping was very high to maintain approximately constant chemical concentrations throughout each experiment (so called "constant composition" cooks). An increase in hydroxide ion concentration andtor hydrogen sulfide ion concentration leads to a decrease in the amount of residual phase lignin, while an increase in ionic strength, i.e. sodium ion concentration, leads to an increase. A signiticant result is that the hydrogen sulfide ion concentration has a pronounced influence on the amount of residual phase lignin during a cook at a low hydroxide ion concentration. The amount of residual phase lignin expressed as % lignin on wood, L,, can be described by the following equation developed for "constant composition" cooks (when cooking with a constant sodium ion concentration of 2 mol/L): LT=0,55-0.32*[HO-](-1,3)*ln[HS-] This equation is valid for a concentration of HO- in the range from 0.17 to 1.4, and a hydrogen sulfide ion concentration from 0.07 to 0.6 mol/L.


Sign in / Sign up

Export Citation Format

Share Document