scholarly journals Experimental Annealing of Zircon: Influence of Inclusions on Stability, Intracrystalline Melt Migration, Common Lead Leaching, and Permeability to Fluids

Author(s):  
Irene Morales ◽  
José F. Molina ◽  
Aitor Cambeses ◽  
Pilar Montero ◽  
Fernando Bea
Author(s):  
Gabriel Pablo Lobo ◽  
Ashok Gadgil

Toxic levels of lead leaching from ageing water distribution infrastructure affect over 5,000 public drinking water systems in the US. Pipe replacement, the most effective solution to this problem, is...


2021 ◽  
Author(s):  
Annelore Bessat ◽  
Sebastien Pilet ◽  
Yuri Yurivech Podladchikov ◽  
Stefan Markus Schmalholz

1998 ◽  
Vol 155 (5) ◽  
pp. 863-872 ◽  
Author(s):  
N. BAGDASSAROV ◽  
A. DORFMAN
Keyword(s):  

Author(s):  
M. Aftalion ◽  
O. van Breemen ◽  
D. R. Bowes

ABSTRACTThe existence of a basement of granulite beneath the Midland Valley is supported by investigations of inclusions in volcanic rocks and the geophysical studies of the LISPB experiment. To establish age constraints for this basement, a compilation is presented of available Rb–Sr whole-rock, common lead, U–Pb zircon and Sm–Nd radiometrie data for crystalline rocks in Scotland from the earliest recognised crust (c. 2900 Ma) to 380 Ma (“end” of Caledonian orogeny) including xenoliths in volcanic vents and boulders in conglomerates.For rocks within the Midland Valley, isotopic data provide four lines of evidence. (1) An upper intercept U–Pb age of c. 1700 Ma for detrital zircons from a lower Palaeozoic greywacke from Dalmellington corresponds to a late stage of the Laxfordian orogenic episode (early Proterozoic) with possibly some overprinting during the Grenvillian episode (mid Proterozoic). (2) The common lead composition of the Distinkhorn granite suggests the participation of early Proterozoic basement during granite emplacement. (3) For xenoliths from the Carboniferous Partan Craig vent, one gives a Sm–Nd CHUR model age of 1180 ± 55 Ma, a second yielded a Sm–Nd garnet—potassium feldspar age of 356 ± 6 Ma and an upper intercept U–Pb age from zircons from the third is c. 2200 (± 240) Ma; for xenoliths from other vents, an Rb–Sr whole-rock isochron of 1101 ± 63 Ma and an Sm–Nd model age of c. 1100 Ma arerecorded. (4) A linear array corresponding to an apparent age of 770 ± 180 Ma on a Pb–Pb isochron diagram for Tertiary igneous rocks of Arran points to an underlying basement of late Precambrian orthogneiss.The existence of basement made of products of the Grenvillian episode, or predominantly so, similar to the basement N of the Highland Boundary fault, is not inconsistent with the available evidence. However, zircons and other rock components appear to have an ultimate Lewisian provenance. At least in parts, there is also a strong late Proterozoic imprint. Further studies are required for an unequivocal solution.


2013 ◽  
Author(s):  
Alexandre de Oliveira Chaves ◽  
Elizabeth Kerpe de Oliveira ◽  
Luiz Rodrigues Armoa Garcia

O método de datação química U-Th-Pb (não-isotópica) de monazita por microssonda eletrônica vem sendo desenvolvido há pelomenos 20 anos e já tem o reconhecimento da comunidade geológica por apresentar resultados que se equivalem à geocronologia isotópicaU-Pb. Este mineral contém quantidades negligenciáveis de chumbo comum, guardando apenas Pb radiogênico proveniente do Th e U destemineral. O desenvolvimento deste método no Laboratório de Microanálises do Departamento de Física da Universidade Federal de MinasGerais mostra que os dados químicos de U, Th e Pb de cristais de monazita fornecidos por sua microssonda eletrônica produzem idadesnão-isotópicas para eles que se equiparam às idades isotópicas U-Pb produzidas pela técnica LA-ICP-MS. Grãos de monazita de placersmarinhos de Buena (RJ) isotopicamente datados pelo método U-Pb com idades entre 530 e 580 Ma foram quimicamente datadas na UFMGentre 505 e 580 Ma. Estes resultados são consideravelmente compatíveis e colocam o referido laboratório a disposição da comunidadegeocientífica para obtenção de idades de cristais de monazita.Palavras-Chave: MONAZITA, DATAÇÃO QUÍMICA, MICROSSONDA ELETRÔNICA, UFMG ABSTRACTDEVELOPMENT OF THE MONAZITE U-Th-Pb CHEMICAL DATING METHOD BY USING ELECTRON MICROPROBE AT UFMG. Themonazite U-Th-Pb chemical dating method (non-isotopic) by electron microprobe has been developed for about 20 years and has theacceptance of the geological community by presenting results that are equivalent to the isotope U-Pb geochronology. This mineral containsnegligible amounts of common lead, keeping only radiogenic Pb from the Th and U of this mineral. The development of this method in themicroanalysis laboratory of the Physics Department- UFMG shows that the monazite U, Th and Pb chemical data provided by itsmicroprobe produce non-isotopic ages for it that are similar to the U-Pb isotopic ages produced by LA-ICP-MS technique. Monazite grainsfrom marine placers of Buena (RJ) isotopically dated by method U-Pb between 530 and 580 Ma were chemically dated at UFMG between505 and 580 Ma. These results are consistent each other and put the laboratory available to the geoscience community as a tool inobtaining monazite ages.Keywords: MONAZITE, CHEMICAL DATING, ELECTRON MICROPROBE, UFMG


Author(s):  
Tracy Rushmer

ABSTRACT:The rheological and chemical behaviour of the lower crust during anatexis has been a major focus of geological investigations for many years. Modern studies of crustal evolution require significant knowledge, not only of the potential source regions for granites, but also of the transport paths and emplacement mechanisms operating during granite genesis. We have gained significant insights into the segregation and transport of granitoid melts from the results of experimental studies on rock behaviour during partial melting. Experiments performed on crustal rock cores under both hydrostatic conditions and during deformation have led, in part, to two conclusions. (1) The interfacial energy controlling melt distribution is anisotropic and, as a result, the textures deviate significantly from those predicted for ideal systems—planar solid-melt interfaces are developed in addition to triple junction melt pockets. The ideal dihedral angle model for melt distribution cannot be used as a constraint to predict melt migration in the lower crust. (2) The ‘critical melt fraction’ model, which requires viscous, granitic melt to remain in the source until melt fractions reach >25 vol%, is not a reliable model for melt segregation. The most recent experimental results on crustal rock cores which have helped advance our understanding of melt segregation processes have shown that melt segregation is controlled by several variables, including the depth of melting, the type of reaction and the volume change associated with that reaction. Larger scale processes such as tectonic environment determine the rate at which the lower crust heats and deforms, thus the tectonic setting controls the melt fraction at which segregation takes place, in addition to the pressure and temperature of the potential melting reactions. Melt migration therefore can occur at a variety of different melt fractions depending on the tectonic environment; these results have significant implications for the predicted geochemistry of the magmas themselves.


2011 ◽  
Vol 103 (7) ◽  
pp. 76-83 ◽  
Author(s):  
Yaofu Zhang ◽  
Marc Edwards
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document