scholarly journals Fabrication of High-Quality Thin Solid-State Electrolyte Films Assisted by Machine Learning

2021 ◽  
pp. 1639-1648
Author(s):  
Yu-Ting Chen ◽  
Marc Duquesnoy ◽  
Darren H. S. Tan ◽  
Jean-Marie Doux ◽  
Hedi Yang ◽  
...  
Nano Energy ◽  
2021 ◽  
pp. 105972
Author(s):  
Zizheng Tong ◽  
Shu-Bo Wang ◽  
Mu-Huai Fang ◽  
Yen-Ting Lin ◽  
Kun Ta Tsai ◽  
...  

2021 ◽  
pp. 2100707
Author(s):  
Sina Stegmaier ◽  
Roland Schierholz ◽  
Ivan Povstugar ◽  
Juri Barthel ◽  
Simon P. Rittmeyer ◽  
...  

2021 ◽  
Vol 492 ◽  
pp. 229661
Author(s):  
Haitian Zhang ◽  
Hui Wu ◽  
Li Wang ◽  
Hong Xu ◽  
Xiangming He

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1241
Author(s):  
Véronique Gomes ◽  
Marco S. Reis ◽  
Francisco Rovira-Más ◽  
Ana Mendes-Ferreira ◽  
Pedro Melo-Pinto

The high quality of Port wine is the result of a sequence of winemaking operations, such as harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring and control, in order to consistently achieve the desired wine properties. The present work focuses on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly extract information from wine grape berries; the collected spectra are fed to machine learning algorithms that produce estimates of the sugar level. A consistent predictive capability is important for establishing the harvest date, as well as to select the best grapes to produce specific high-quality wines. We compared four different machine learning methods (including deep learning), assessing their generalization capacity for different vintages and varieties not included in the training process. Ridge regression, partial least squares, neural networks and convolutional neural networks were the methods considered to conduct this comparison. The results show that the estimated models can successfully predict the sugar content from hyperspectral data, with the convolutional neural network outperforming the other methods.


Author(s):  
Jingfeng Zheng ◽  
Hong Fang ◽  
Longlong Fan ◽  
Yang Ren ◽  
Puru Jena ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A62-A62
Author(s):  
Dattatreya Mellacheruvu ◽  
Rachel Pyke ◽  
Charles Abbott ◽  
Nick Phillips ◽  
Sejal Desai ◽  
...  

BackgroundAccurately identified neoantigens can be effective therapeutic agents in both adjuvant and neoadjuvant settings. A key challenge for neoantigen discovery has been the availability of accurate prediction models for MHC peptide presentation. We have shown previously that our proprietary model based on (i) large-scale, in-house mono-allelic data, (ii) custom features that model antigen processing, and (iii) advanced machine learning algorithms has strong performance. We have extended upon our work by systematically integrating large quantities of high-quality, publicly available data, implementing new modelling algorithms, and rigorously testing our models. These extensions lead to substantial improvements in performance and generalizability. Our algorithm, named Systematic HLA Epitope Ranking Pan Algorithm (SHERPA™), is integrated into the ImmunoID NeXT Platform®, our immuno-genomics and transcriptomics platform specifically designed to enable the development of immunotherapies.MethodsIn-house immunopeptidomic data was generated using stably transfected HLA-null K562 cells lines that express a single HLA allele of interest, followed by immunoprecipitation using W6/32 antibody and LC-MS/MS. Public immunopeptidomics data was downloaded from repositories such as MassIVE and processed uniformly using in-house pipelines to generate peptide lists filtered at 1% false discovery rate. Other metrics (features) were either extracted from source data or generated internally by re-processing samples utilizing the ImmunoID NeXT Platform.ResultsWe have generated large-scale and high-quality immunopeptidomics data by using approximately 60 mono-allelic cell lines that unambiguously assign peptides to their presenting alleles to create our primary models. Briefly, our primary ‘binding’ algorithm models MHC-peptide binding using peptide and binding pockets while our primary ‘presentation’ model uses additional features to model antigen processing and presentation. Both primary models have significantly higher precision across all recall values in multiple test data sets, including mono-allelic cell lines and multi-allelic tissue samples. To further improve the performance of our model, we expanded the diversity of our training set using high-quality, publicly available mono-allelic immunopeptidomics data. Furthermore, multi-allelic data was integrated by resolving peptide-to-allele mappings using our primary models. We then trained a new model using the expanded training data and a new composite machine learning architecture. The resulting secondary model further improves performance and generalizability across several tissue samples.ConclusionsImproving technologies for neoantigen discovery is critical for many therapeutic applications, including personalized neoantigen vaccines, and neoantigen-based biomarkers for immunotherapies. Our new and improved algorithm (SHERPA) has significantly higher performance compared to a state-of-the-art public algorithm and furthers this objective.


2021 ◽  
Vol 13 (9) ◽  
pp. 11018-11025
Author(s):  
Yanjun Xu ◽  
Shengzhao Zhang ◽  
Taibo Liang ◽  
Zhujun Yao ◽  
Xiuli Wang ◽  
...  

2021 ◽  
Vol 227 ◽  
pp. 111014
Author(s):  
Chien-Chung Hsu ◽  
Sheng-Min Yu ◽  
Kun-Mu Lee ◽  
Chuan-Jung Lin ◽  
Hao-Chien Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document