In Situ Secondary Phase Modified Low-Strain Na3Ti(PO3)3N Cathode Achieving Fast Kinetics and Ultralong Cycle Life

2022 ◽  
pp. 632-639
Author(s):  
Shufan Wu ◽  
Lifeng Wang ◽  
Yu Jiang ◽  
Hai Yang ◽  
Ying Wu ◽  
...  
1997 ◽  
Vol 502 ◽  
Author(s):  
Ivan Bozovic ◽  
J. N. Eckstein ◽  
Natasha Bozovic ◽  
J. O'Donnell

ABSTRACTReal-time, in-situ surface monitoring by reflection high-energy electron diffraction (RHEED) has been the key enabling component of atomic-layer-by-layer molecular beam epitaxy (ALL-MBE) of complex oxides. RHEED patterns contain information on crystallographic arrangements and long range order on the surface; this can be made quantitative with help of numerical simulations. The dynamics of RHEED patterns and intensities reveal a variety of phenomena such as nucleation and dissolution of secondary-phase precipitates, switching between growth modes (layer-by-layer, step-flow), surface phase transitions (surface reconstruction, roughening, and even phase transitions induced by the electron beam itself), etc. Some of these phenomena are illustrated here, using as a case study our recent growth of atomically smooth a-axis oriented DyBa2Cu3O7 films.


2017 ◽  
Vol 8 ◽  
pp. 119-126 ◽  
Author(s):  
Wei He ◽  
Yujia Liang ◽  
Huajun Tian ◽  
Shunlong Zhang ◽  
Zhen Meng ◽  
...  

2020 ◽  
Vol 10 (38) ◽  
pp. 2001050 ◽  
Author(s):  
Qiuyang Tan ◽  
Xueting Li ◽  
Bao Zhang ◽  
Xu Chen ◽  
Yawen Tian ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Mathieu Debure ◽  
Yannick Linard ◽  
Christelle Martin ◽  
Francis Claret

Abstract Silicate glasses are durable materials but laboratory experiments reveal that elements that derive from their environment may induce high corrosion rates and reduce their capacity to confine high-level radioactive waste. This study investigates nuclear-glass corrosion in geological media using an in situ diffusion experiment and multi-component diffusion modelling. The model highlights that the pH imposed by the Callovo–Oxfordian (COx) claystone host rock supports secondary-phase precipitation and increases glass corrosion compared with pure water. Elements from the COx rock (mainly Mg and Fe) form secondary phases with Si provided by the glass, which delay the establishment of a passivating interface. The presence of elements (Mg and Fe) that sustain glass alteration does not prevent a significant decrease in the glass-alteration rate, mainly due to the limited species transport that drives system reactivity. These improvements in the understanding of glass corrosion in its environment provide further insights for predictive modelling over larger timescales and space.


2009 ◽  
Vol 95 (23) ◽  
pp. 232506 ◽  
Author(s):  
G. Talut ◽  
J. Grenzer ◽  
H. Reuther ◽  
A. Shalimov ◽  
C. Baehtz ◽  
...  

2010 ◽  
Vol 1262 ◽  
Author(s):  
Volodymyr Yartys ◽  
Roman Denys ◽  
Jan Petter Maehlen ◽  
Colin J Webb ◽  
Evan MacA Gray ◽  
...  

AbstractThis work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C.The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content.Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra.For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling.A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides.The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.


2015 ◽  
Vol 2 (5) ◽  
pp. 737-742 ◽  
Author(s):  
Xiaolei Sun ◽  
Wenping Si ◽  
Lixia Xi ◽  
Bo Liu ◽  
Xuejun Liu ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document