scholarly journals Reproducible Microbial Community Dynamics of Two Drinking Water Systems Treating Similar Source Waters

2021 ◽  
Author(s):  
Sarah Potgieter ◽  
Zihan Dai ◽  
Minette Havenga ◽  
Solize Vosloo ◽  
Makhosazana Sigudu ◽  
...  
2019 ◽  
Author(s):  
Sarah C Potgieter ◽  
Ameet J Pinto ◽  
Minette Havenga ◽  
Makhosazana Sigudu ◽  
Stefanus N Venter

AbstractIn addition to containing higher concentrations of organics and bacterial cells, surface waters are often more vulnerable to pollution and microbial contamination with intensive industrial and agricultural activities frequently occurring in areas surrounding the water source. Therefore, surface waters typically require additional treatment, where the choice of treatment strategy is critical for water quality. Using 16S rRNA gene profiling, this study provides a unique opportunity to simultaneously investigate and compare two drinking water treatment plants and their corresponding distribution systems. The two treatment plants treat similar surface waters, from the same river system, with the same sequential treatment strategies. Here, the impact of treatment and distribution on the microbial community within and between each system was compared over an eight-month sampling campaign. Overall, reproducible spatial and temporal dynamics within both DWTPs and their corresponding DWDSs were observed. Although source waters showed some dissimilarity in microbial community structure and composition, pre-disinfection treatments (i.e. coagulation, flocculation, sedimentation and filtration) resulted in highly similar microbial communities between the filter effluent samples. This indicated that the same treatments resulted in the development of similar microbial communities. Conversely, post-disinfection (i.e. chlorination and chloramination) resulted in increased dissimilarity between disinfected samples from the two systems, showing alternative responses of the microbial community to disinfection. Lastly, it was observed that within the distribution system the same dominant taxa were selected where samples increased in similarity with increased residence time. Although, differences were found between the two systems, overall treatment and distribution had a similar impact on the microbial community in each system. This study therefore provides valuable information on the impact of treatment and distribution on the drinking water microbiome.HighlightsSource waters show some dissimilarity in microbial community.Treatment processes increases similarity and selects for the same dominant taxa.Differential response to chlorination causing increased dissimilarity and variation.Stabilisation of DWDS microbial community through selection of same dominant taxa.Microbial community dynamics are reproducible between the two systems.


Methods ◽  
2012 ◽  
Vol 57 (3) ◽  
pp. 338-349 ◽  
Author(s):  
Susann Müller ◽  
Thomas Hübschmann ◽  
Sabine Kleinsteuber ◽  
Carsten Vogt

2015 ◽  
Vol 190 ◽  
pp. 159-166 ◽  
Author(s):  
Shengnan Shi ◽  
Yuanyuan Qu ◽  
Qiao Ma ◽  
XuWang Zhang ◽  
Jiti Zhou ◽  
...  

Author(s):  
Francesca Serio ◽  
Lucia Martella ◽  
Giovanni Imbriani ◽  
Adele Idolo ◽  
Francesco Bagordo ◽  
...  

Background: The quality of water for human consumption is an objective of fundamental importance for the defense of public health. Since the management of networks involves many problems of control and efficiency of distribution, the Water Safety Plan (WSP) was introduced to address these growing problems. Methods: WSP was applied to three companies in which the water resource assumes central importance: five water kiosks, a third-range vegetable processing company, and a residence and care institution. In drafting the plan, the terms and procedures designed and tested for the management of urban distribution systems were applied to safeguard the resource over time. Results: The case studies demonstrated the reliability of the application of the model even to small drinking-water systems, even though it involved a greater effort in analyzing the incoming water, the local intended use, and the possibilities for managing the containment of the dangers to which it is exposed. This approach demonstrates concrete effectiveness in identifying and mitigating the dangers of altering the quality of water. Conclusions: Thanks to the WSP applied to small drinking-water systems, we can move from management that is focused mainly on verifying the conformity of the finished product to the creation of a global risk assessment and management system that covers the entire water supply chain.


Sign in / Sign up

Export Citation Format

Share Document