Recent Advances in the Evaluation of Antimicrobial Materials for Resolution of Orthopedic Implant-Associated Infections In Vivo

Author(s):  
Erika L. Cyphert ◽  
Ningjing Zhang ◽  
Greg D. Learn ◽  
Christopher J. Hernandez ◽  
Horst A. von Recum
2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


2018 ◽  
Vol 109 ◽  
pp. 247-259 ◽  
Author(s):  
Hanjun Cheng ◽  
Lijuan Li ◽  
Meining Zhang ◽  
Ying Jiang ◽  
Ping Yu ◽  
...  

2016 ◽  
Vol 22 (2) ◽  
pp. 120-137 ◽  
Author(s):  
Jasmeet P. Hayes ◽  
Erin D. Bigler ◽  
Mieke Verfaellie

AbstractObjectives:Recent advances in neuroimaging methodologies sensitive to axonal injury have made it possible to assess in vivo the extent of traumatic brain injury (TBI) -related disruption in neural structures and their connections. The objective of this paper is to review studies examining connectivity in TBI with an emphasis on structural and functional MRI methods that have proven to be valuable in uncovering neural abnormalities associated with this condition.Methods:We review studies that have examined white matter integrity in TBI of varying etiology and levels of severity, and consider how findings at different times post-injury may inform underlying mechanisms of post-injury progression and recovery. Moreover, in light of recent advances in neuroimaging methods to study the functional connectivity among brain regions that form integrated networks, we review TBI studies that use resting-state functional connectivity MRI methodology to examine neural networks disrupted by putative axonal injury.Results:The findings suggest that TBI is associated with altered structural and functional connectivity, characterized by decreased integrity of white matter pathways and imbalance and inefficiency of functional networks. These structural and functional alterations are often associated with neurocognitive dysfunction and poor functional outcomes.Conclusions:TBI has a negative impact on distributed brain networks that lead to behavioral disturbance. (JINS, 2016,22, 120–137)


1995 ◽  
Vol 269 (3) ◽  
pp. H755-H766 ◽  
Author(s):  
K. R. Chien

Recent advances in molecular, cellular, and genetically based technologies now offer the possibility of generating genetically engineered mice that display physiological phenotypes with direct relevance to human pathophysiological states. The ability to create gene ablations, gene duplications, and gene modifications should allow the use of genetic approaches to map in vivo pathways responsible for complex physiological phenotypes. Recent work from our laboratory utilizing this approach to study cardiac muscle diseases in both the adult context (cardiac hypertrophy) and in the embryonic context (congenital ventricular defects) will be discussed, as well as the steps that led to the generation and characterization of these novel mouse model systems. A large body of work from independent laboratories now points to the inception of a new field of molecular physiology that will fuse mouse genetics and in vivo physiology using appropriate miniaturized physiological technology. Recent advances and prospects for future directions are summarized.


2017 ◽  
Vol 13 (1) ◽  
pp. 123-142 ◽  
Author(s):  
Xiao Lin ◽  
Shaofeng Yang ◽  
Kalyn Lai ◽  
Huilin Yang ◽  
Thomas J. Webster ◽  
...  

2020 ◽  
Vol 18 (6) ◽  
pp. 696-704
Author(s):  
Dieter H. Pahr ◽  
Andreas G. Reisinger

Abstract Purpose of Review Image-based finite element analysis (FEA) to predict and understand the biomechanical response has become an essential methodology in musculoskeletal research. An important part of such simulation models is the constitutive material model of which recent advances are summarized in this review. Recent Findings The review shows that existing models from other fields were introduced, such as cohesion zone (cortical bone) or phase-field models (trabecular bone). Some progress has been made in describing cortical bone involving physical mechanisms such as microcracks. Problems with validations at different length scales remain a problem. Summary The improvement of recent constitutive models is partially obscured by uncertainties that affect overall predictions, such as image quality and calibration or boundary conditions. Nevertheless, in vivo CT-based FEA simulations based on a sophisticated constitutive behavior are a very valuable tool for clinical-related osteoporosis research.


2019 ◽  
Vol 39 (46) ◽  
pp. 9042-9052 ◽  
Author(s):  
Jérôme Lecoq ◽  
Natalia Orlova ◽  
Benjamin F. Grewe

Sign in / Sign up

Export Citation Format

Share Document