protein splicing
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 39)

H-INDEX

58
(FIVE YEARS 4)

Author(s):  
Ananya Nanda ◽  
Sourya Subhra Nasker ◽  
Anoop K. Kushwaha ◽  
Deepak Kumar Ojha ◽  
Albert K. Dearden ◽  
...  

Protein splicing is a self-catalyzed event where the intervening sequence intein cleaves off, joining the flanking exteins together to generate a functional protein. Attempts have been made to regulate the splicing rate through variations in temperature, pH, and metals. Although metal-regulated protein splicing has been more captivating to researchers, metals were shown to only inhibit splicing reactions that confine their application. This is the first study to show the effect of nanoparticles (NPs) on protein splicing. We found that gold nanoparticles (AuNPs) of various sizes can increase the splicing efficiency by more than 50% and the N-terminal cleavage efficiency by more than 45% in Mycobacterium tuberculosis SufB precursor protein. This study provides an effective strategy for engineering splicing-enhanced intein platforms. UV-vis absorption spectroscopy, isothermal titration calorimetry (ITC), and transmission electron microscopy (TEM) confirmed AuNP interaction with the native protein. Quantum mechanics/molecular mechanics (QM/MM) analysis suggested a significant reduction in the energy barrier at the N-terminal cleavage site in the presence of gold atom, strengthening our experimental evidence on heightened the N-terminal cleavage reaction. The encouraging observation of enhanced N-terminal cleavage and splicing reaction can have potential implementations from developing a rapid drug delivery system to designing a contemporary protein purification system.


2021 ◽  
Vol 8 ◽  
Author(s):  
Diana A. Wall ◽  
Seanan P. Tarrant ◽  
Chunyu Wang ◽  
Kenneth V. Mills ◽  
Christopher W. Lennon

Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism’s fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5948
Author(s):  
A. Sesilja Aranko ◽  
Hideo Iwaï

An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields. Therefore, controlling the protein-splicing activity of inteins has become critical. Here we utilized conditional protein splicing by salt conditions. We developed the inducible intein-mediated self-cleaving tag (IIST) system based on salt-inducible protein splicing of the MCM2 intein from the extremely halophilic archaeon, Halorhabdus utahensis and applied it to small peptides. Moreover, we described a method for the amidation using the same IIST system and demonstrated 15N-labeling of the C-terminal amide group of a single domain antibody (VHH).


Author(s):  
Christopher W. Lennon ◽  
Daniel Wahl ◽  
J. R. Goetz ◽  
Joel Weinberger

Inteins are both widespread and abundant in microbes, including within several bacterial and fungal pathogens. Inteins are domains translated within host proteins and removed at the protein level by splicing.


Oncogene ◽  
2021 ◽  
Author(s):  
O. Bi ◽  
C. A. Anene ◽  
J. Nsengimana ◽  
M. Shelton ◽  
W. Roberts ◽  
...  

AbstractThe multifunctional protein, splicing factor, proline- and glutamine-rich (SFPQ) has been implicated in numerous cancers often due to interaction with coding and non-coding RNAs, however, its role in melanoma remains unclear. We report that knockdown of SFPQ expression in melanoma cells decelerates several cancer-associated cell phenotypes, including cell growth, migration, epithelial to mesenchymal transition, apoptosis, and glycolysis. RIP-seq analysis revealed that the SFPQ-RNA interactome is reprogrammed in melanoma cells and specifically enriched with key melanoma-associated coding and long non-coding transcripts, including SOX10, AMIGO2 and LINC00511 and in most cases SFPQ is required for the efficient expression of these genes. Functional analysis of two SFPQ-enriched lncRNA, LINC00511 and LINC01234, demonstrated that these genes independently contribute to the melanoma phenotype and a more detailed analysis of LINC00511 indicated that this occurs in part via modulation of the miR-625-5p/PKM2 axis. Importantly, analysis of a large clinical cohort revealed that elevated expression of SFPQ in primary melanoma tumours may have utility as a prognostic biomarker. Together, these data suggest that SFPQ is an important driver of melanoma, likely due to SFPQ–RNA interactions promoting the expression of numerous oncogenic transcripts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennie E. Williams ◽  
Mario V. Jaramillo ◽  
Zhong Li ◽  
Jing Zhao ◽  
Chunyu Wang ◽  
...  

AbstractProtein splicing is a post-translational process by which an intein catalyzes its own excision from flanking polypeptides, or exteins, concomitant with extein ligation. Many inteins have nested homing endonuclease domains that facilitate their propagation into intein-less alleles, whereas other inteins lack the homing endonuclease (HEN) and are called mini-inteins. The mini-intein that interrupts the DNA PolII of Pyrococcus horikoshii has a linker region in place of the HEN domain that is shorter than the linker in a closely related intein from Pyrococcus abyssi. The P. horikoshii PolII intein requires a higher temperature for catalytic activity and is more stable to digestion by the thermostable protease thermolysin, suggesting that it is more rigid than the P. abyssi intein. We solved a crystal structure of the intein precursor that revealed a domain-swapped dimer. Inteins found as domain swapped dimers have been shown to promote intein-mediated protein alternative splicing, but the solved P. horikoshii PolII intein structure has an active site unlikely to be catalytically competent.


2021 ◽  
Vol 1865 (5) ◽  
pp. 129844
Author(s):  
Valerio Chiarini ◽  
Annarita Fiorillo ◽  
Serena Camerini ◽  
Marco Crescenzi ◽  
Shin Nakamura ◽  
...  

2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Daniel Woods ◽  
Danielle S. LeSassier ◽  
Ikechukwu Egbunam ◽  
Christopher W. Lennon

Sign in / Sign up

Export Citation Format

Share Document