Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence

2021 ◽  
pp. 1223-1228
Author(s):  
Haiwang Lai ◽  
Makoto Ouchi
Author(s):  
Yasuyuki Kita ◽  
Norio Shibata ◽  
Seiji Fukui ◽  
Masahiko Bando ◽  
Shigekazu Fujita
Keyword(s):  

2002 ◽  
Vol 242 (1-2) ◽  
pp. 399-404 ◽  
Author(s):  
M. Devassine ◽  
F. Henry ◽  
P. Guerin ◽  
X. Briand
Keyword(s):  

1989 ◽  
Vol 67 (8) ◽  
pp. 1354-1358 ◽  
Author(s):  
Jacques Paquet ◽  
Paul Brassard

The behaviour of various types of polar dienes towards halogenated ortho quinones has been investigated in a number of representative cases. As compared to the commonly used para analogues, o-quinones provide a wide range of products that indicate a keener response to the nature, number, and position of substituents on both reactants. 3-Halogenated-o-naphthoquinones 1 and 2 react smoothly with a representative vinologous ketene acetal 3, vinylketene acetals 4 and 5, and a monooxygenated diene 6 to provide variously substituted phenanthrenequinones 7–11. Only monooxygenated dienes on the other hand add to o-benzoquinones 14–16 and give convenient syntheses of the corresponding o-naphthoquinones 18–20. Keywords: cycloaddition, o-naphthoquinones, phenanthrenequinones, regiospecificity.


2015 ◽  
Vol 51 (64) ◽  
pp. 12847-12850 ◽  
Author(s):  
Vianney Delplace ◽  
Elise Guégain ◽  
Simon Harrisson ◽  
Didier Gigmes ◽  
Yohann Guillaneuf ◽  
...  

2 Methylene-4-phenyl-1,3-dioxolane (MPDL) was used as a controlling comonomer in NMP with oligo(ethylene glycol) methyl ether methacrylate (MeOEGMA) to prepare well-defined and degradable PEG-based P(MeOEGMA-co-MPDL) copolymers.


Author(s):  
Chunyang Bao ◽  
Xuhao Zhang ◽  
Pengdong Yu ◽  
Qingzhong Li ◽  
Yusheng Qin ◽  
...  

Degradable polymers that play an increasingly important role in the development of sustainable society are highly demanded to feature not only high mechanical strength, but also exhibit superior toughness. Herein,...


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2648 ◽  
Author(s):  
Kuruma Malkappa ◽  
Jayita Bandyopadhyay ◽  
Suprakas Ray

Polylactide (PLA) is one of the most widely used organic bio-degradable polymers. However, it has poor flame retardancy characteristics. To address this disadvantage, we performed melt-blending of PLA with intumescent flame retardants (IFRs; melamine phosphate and pentaerythritol) in the presence of organically modified montmorillonite (OMMT), which resulted in nanobiocomposites with excellent intumescent char formation and improved flame retardant characteristics. Triphenyl benzyl phosphonium (OMMT-1)- and tributyl hexadecyl phosphonium (OMMT-2)-modified MMTs were used in this study. Thermogravimetric analysis in combination with Fourier transform infrared spectroscopy showed that these nanocomposites release a smaller amount of toxic gases during thermal degradation than unmodified PLA. Melt-rheological behaviors supported the conclusions drawn from the cone calorimeter data and char structure of the various nanobiocomposites. Moreover, the characteristic of the surfactant used for the modification of MMT played a crucial role in controlling the fire properties of the composites. For example, the nanocomposite containing 5 wt.% OMMT-1 showed significantly improved fire properties with a 47% and 68% decrease in peak heat and total heat release rates, respectively, as compared with those of unmodified PLA. In summary, melt-blending of PLA, IFR, and OMMT has potential in the development of high-performance PLA-based sustainable materials.


Sign in / Sign up

Export Citation Format

Share Document