intumescent flame retardants
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4382
Author(s):  
Claudia Forte ◽  
Jenny Alongi ◽  
Alessandro Beduini ◽  
Silvia Borsacchi ◽  
Lucia Calucci ◽  
...  

Linear polyamidoamines (PAAs) derived from the polyaddition of natural α-amino acids and N,N′-methylene bis(acrylamide) are intumescent flame retardants for cotton. Among them, the glycine-derived M-GLY extinguished the flame in horizontal flame spread tests at 4% by weight add-on. This paper reports on an extensive study aimed at understanding the molecular-level transformations of M-GLY-treated cotton upon heating in air at 300 °C, 350 °C and 420 °C. Thermogravimetric analysis (TGA) identified different thermal-oxidative decomposition stages and, coupled to Fourier transform infrared spectroscopy, allowed the volatile species released upon heating to be determined, revealing differences in the decomposition pattern of treated and untreated cotton. XPS analysis of the char residues of M-GLY-treated cotton revealed the formation of aromatic nanographitic char at lower temperature with respect to untreated cotton. Raman spectroscopy of the char residues provided indications on the degree of graphitization of treated and untreated cotton at the three reference temperatures. Solid state 13C nuclear magnetic resonance spectroscopy (NMR) provided information on the char structure as a function of the treatment temperature, clearly indicating that M-GLY favors the carbonization of cotton with the formation of more highly condensed aromatic structures.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3513
Author(s):  
Xiaodong Jin ◽  
Suping Cui ◽  
Shibing Sun ◽  
Jun Sun ◽  
Sheng Zhang

In this work, a novel intumescent flame retardant (IFR) system was fabricated by the introduction of chitin as a green charring agent, ammonium polyphosphate (APP) as the acid source, and melamine (MEL) as the gas source. The obtained chitin-based IFR was then incorporated into a polylactic acid (PLA) matrix using melt compounding. The fire resistance of PLA/chitin composites was investigated via the limiting oxygen index (LOI), UL-94 vertical burning, and cone calorimeter (CONE) tests. The results demonstrated that the combination of 10%APP, 5%chitin and 5%MEL could result in a 26.0% LOI, a V-0 rating after UL and a 51.2% reduction in the peak heat release rate during the CONE test. Based on the mechanism analysis from both the morphology and the chemical structure of the char, it was suggested that chitin was a promising candidate as a charring agent for chitin reacted with APP and MEL with the formation of an intumescent layer on the surface.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1585
Author(s):  
Weimiao Lu ◽  
Jiewang Ye ◽  
Lianghai Zhu ◽  
Zhenfu Jin ◽  
Yuji Matsumoto

Intumescent flame retardants (IFR) have been widely used to improve flame retardancy of rigid polyurethane (RPU) foams and the most commonly used char forming agent is pentaerythritol (PER). Lignosulfonate (LS) is a natural macromolecule with substantial aromatic structures and abundant hydroxyl groups, and carbon content higher than PER. The flame retardancy and its mechanism of LS as char forming agent instead of PER in IFR formulation were investigated by scanning electron microscopy, thermogravimetric analysis, limiting oxygen index testing and cone calorimeter test. The results showed LS as a char forming agent did not increase the density of RPU/LS foams. LOI value and char residue of RPU/LS foam were higher than RPU/PER and the mass loss of RPU/LS foam decreased 18%, suggesting enhanced thermal stability. CCT results showed LS as a char forming agent in IFR formulation effectively enhanced the flame retardancy of RPU foams with respect to PER. The flame retardancy mechanism showed RPU/LS foam presented a continuous and relatively compact char layer, acting as the effect of the flame retardant and heat insulation between gaseous and condensed phases. The efficiency of different LS ratio in IFR formulation as char forming agent was different, and the best flame retardancy and thermal stability was obtained at RPU/LS1.


2021 ◽  
pp. 62
Author(s):  
Ekaterina V. Golovina ◽  
Oksana V. Bezzaponnaya ◽  
Natalia V. Khabibullina ◽  
Timur Kh. Mansurov ◽  
Galina I. Bolodian

Author(s):  
Hatice Birtane ◽  

Flame retardant property to paper increases the use of paper and the value of paper products. The flame retardant property was achieved by the addition of an organophosphorus agent to the paper. A great deal of research has been done on 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives as flame retardants. To apply the flame retardant property in condensed phase, DOPO derivative materials are generally used as an acid source for intumescent flame retardants to promote dehydration and carbonization of the charring agent to form a continuous layer of carbon. In this study, In order to prepare a flame retardant paper coating, DOPO derivative was synthesized with 3-aminophenyl sulfone, and benzaldehyde reaction and the chemical structure of DOPO is illuminated by ATR-FTIR then paper was coating with a flame retardant coating formulation ingredient with DOPO. The paper’s properties were investigated. Surface energy of coated papers and contact angles were determined with goniometer. Printability parameters such as color, gloss, surface tension were examined. The results the study DOPO added paper coatings improve the paper flame retardancy.


Sign in / Sign up

Export Citation Format

Share Document