Spectral Modulation through the Hybridization of Mie-Scatterers and Quasi-Guided Mode Resonances: Realizing Full and Gradients of Structural Color

ACS Nano ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 15317-15326 ◽  
Author(s):  
Jaehyuck Jang ◽  
Trevon Badloe ◽  
Younghwan Yang ◽  
Taejun Lee ◽  
Jungho Mun ◽  
...  
2009 ◽  
Vol 48 (6) ◽  
pp. 06FH04 ◽  
Author(s):  
Yoshiaki Kanamori ◽  
Hiroki Katsube ◽  
Tomonobu Furuta ◽  
Shoji Hasegawa ◽  
Kazuhiro Hane

2018 ◽  
Vol 124 (5) ◽  
pp. 053101
Author(s):  
Zhi Liu ◽  
Jietao Liu ◽  
Buwen Cheng ◽  
Jun Zheng ◽  
Chuanbo Li ◽  
...  

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang ◽  
Lucas V. Besteiro ◽  
Peng Yu ◽  
Feng Lin ◽  
Alexander O. Govorov ◽  
...  

Abstract Hot electrons generated in metallic nanostructures have shown promising perspectives for photodetection. This has prompted efforts to enhance the absorption of photons by metals. However, most strategies require fine-tuning of the geometric parameters to achieve perfect absorption, accompanied by the demanding fabrications. Here, we theoretically propose a Ag grating/TiO2 cladding hybrid structure for hot electron photodetection (HEPD) by combining quasi-bound states in the continuum (BIC) and plasmonic hot electrons. Enabled by quasi-BIC, perfect absorption can be readily achieved and it is robust against the change of several structural parameters due to the topological nature of BIC. Also, we show that the guided mode can be folded into the light cone by introducing a disturbance to become a guided resonance, which then gives rise to a narrow-band HEPD that is difficult to be achieved in the high loss gold plasmonics. Combining the quasi-BIC and the guided resonance, we also realize a multiband HEPD with near-perfect absorption. Our work suggests new routes to enhance the light-harvesting in plasmonic nanosystems.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2797
Author(s):  
Jing-Jhong Gao ◽  
Ching-Wei Chiu ◽  
Kuo-Hsing Wen ◽  
Cheng-Sheng Huang

This paper presents a compact spectral detection system for common fluorescent and colorimetric assays. This system includes a gradient grating period guided-mode resonance (GGP-GMR) filter and charge-coupled device. In its current form, the GGP-GMR filter, which has a size of less than 2.5 mm, can achieve a spectral detection range of 500–700 nm. Through the direct measurement of the fluorescence emission, the proposed system was demonstrated to detect both the peak wavelength and its corresponding intensity. One fluorescent assay (albumin) and two colorimetric assays (albumin and creatinine) were performed to demonstrate the practical application of the proposed system for quantifying common liquid assays. The results of our system exhibited suitable agreement with those of a commercial spectrometer in terms of the assay sensitivity and limit of detection (LOD). With the proposed system, the fluorescent albumin, colorimetric albumin, and colorimetric creatinine assays achieved LODs of 40.99 and 398 and 25.49 mg/L, respectively. For a wide selection of biomolecules in point-of-care applications, the spectral detection range achieved by the GGP-GMR filter can be further extended and the simple and compact optical path configuration can be integrated with a lab-on-a-chip system.


Author(s):  
Wenqi Yang ◽  
Shinya Yamamoto ◽  
Keiichiro Sueyoshi ◽  
Takumi Inadomi ◽  
Riki Kato ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Wenqi Yang ◽  
Shinya Yamamoto ◽  
Keiichiro Sueyoshi ◽  
Takumi Inadomi ◽  
Riki Kato ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2103697
Author(s):  
Hongkyu Eoh ◽  
Youngdoo Jung ◽  
Chanho Park ◽  
Chang Eun Lee ◽  
Tae Hyun Park ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Mingjie Chen ◽  
Long Wen ◽  
Dahui Pan ◽  
David Cumming ◽  
Xianguang Yang ◽  
...  

Pixel scaling effects have been a major issue for the development of high-resolution color image sensors due to the reduced photoelectric signal and the color crosstalk. Various structural color techniques...


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ki Young Lee ◽  
Kwang Wook Yoo ◽  
Youngsun Choi ◽  
Gunpyo Kim ◽  
Sangmo Cheon ◽  
...  

Abstract The topological properties of photonic microstructures are of great interest because of their experimental feasibility for fundamental study and potential applications. Here, we show that robust guided-mode-resonance states exist in photonic domain-wall structures whenever the complex photonic band structures involve certain topological correlations in general. Using the non-Hermitian photonic analogy of the one-dimensional Dirac equation, we derive essential conditions for photonic Jackiw-Rebbi-state resonances taking advantage of unique spatial confinement and spot-like spectral features which are remarkably robust against random parametric errors. Therefore, the proposed resonance configuration potentially provides a powerful method to create compact and stable photonic resonators for various applications in practice.


Sign in / Sign up

Export Citation Format

Share Document