Shape Stability of Octahedral PtNi Nanocatalysts for Electrochemical Oxygen Reduction Reaction Studied by in situ Transmission Electron Microscopy

ACS Nano ◽  
2018 ◽  
Vol 12 (6) ◽  
pp. 5306-5311 ◽  
Author(s):  
Martin Gocyla ◽  
Stefanie Kuehl ◽  
Meital Shviro ◽  
Henner Heyen ◽  
Soeren Selve ◽  
...  
2019 ◽  
Vol 25 (S2) ◽  
pp. 2072-2073
Author(s):  
Yunzhi Liu ◽  
Melissa E. Kreider ◽  
Michaela Burke Stevens ◽  
Laurie A. King ◽  
Thomas F. Jaramillo ◽  
...  

Author(s):  
A. Leela Mohana Reddy ◽  
M. M. Shaijumon ◽  
N. Rajalakshmi ◽  
S. Ramaprabhu

Multiwalled carbon nanotubes (MWNTs) have been synthesized by the pyrolysis of acetylene using hydrogen decrepitated Mischmetal based AB3 alloy hydride catalyst. Structural, morphological, and vibrational characterizations have been carried out using X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) spectroscopy. Pt-supported MWNTs (Pt/MWNTs) have been prepared by chemical reduction method using functionalized MWNTs. Composites of Pt/MWNTs and Pt/C in different weight proportions have been used as electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cell (PEMFC) and the performance on the accessibility of Pt electrocatalysts for the oxygen reduction reaction in PEMFC has been systematically studied. The cyclic voltammetric studies of the electrodes have been performed in order to understand the factors influencing the elecetrocatalytic activity and fuel cell performance and the results have been discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 170
Author(s):  
Hilda M. Alfaro-López ◽  
Manuel A. Valdés-Madrigal ◽  
Hugo Rojas-Chávez ◽  
Heriberto Cruz-Martínez ◽  
Miguel A. Padilla-Islas ◽  
...  

Commercialization of the polymer electrolyte membrane fuel cell (PEMFC) requires that electrocatalysts for oxygen reduction reaction (ORR) satisfy two main considerations: materials must be highly active and show long-term stability in acid medium. Here, we describe the synthesis, physical characterization, and electrochemical evaluation of carbon-dispersed Pt2NiCo nanocatalysts for ORR in acid medium. We synthesized a trimetallic electrocatalyst via chemical route in organic medium and investigated the physical properties of the Pt2NiCo/C nanocatalyst by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy-scanning electron microscope (EDXS-SEM), and scanning transmission electron microscopy (STEM), whereas the catalytic activities of the Pt2NiCo/C and Pt/C nanocatalysts were determined through cyclic voltammetry (CV), CO-stripping, and rotating disk electrode (RDE) electrochemical techniques. XRD and EDXS-SEM results confirmed the presence of the three metals in the nanoparticles, and scanning transmission electron microscopy (STEM) allowed observation of the Pt2NiCo nanoparticles at ~10 nm. The measured specific activity for the synthesized nanocatalyst is ~6.4-fold higher than that of Pt/C alone, and its mass activity is ~2.2-fold higher than that of Pt/C, which is attributed to the synergistic interaction of the trimetallic electrocatalyst. Furthermore, the specific and mass activities of the synthesized material are maintained after the accelerated stability test, whereas the catalytic properties of Pt/C decreased. These results suggest that the Pt2NiCo/C trimetallic nanocatalyst is a promising candidate cathode electrode for use in PEMFCs.


Author(s):  
Zhi-Peng Wu ◽  
Hui Zhang ◽  
Cailing Chen ◽  
Guanxing Li ◽  
Yu Han

Oxygen electrocatalysis involving the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) plays a vital role in cutting-edge energy conversion and storage technologies. In situ studies of the evolution of catalysts during oxygen electrocatalysis can provide important insights into their structure - activity relationships and stabilities under working conditions. Among the various in situ characterization tools available, in situ electron microscopy has the unique ability to perform structural and compositional analyzes with high spatial resolution. In this review, we present the latest developments in in situ and quasi-in situ electron microscopic techniques, including identical location electron microscopy, in situ liquid cell (scanning) transmission electron microscopy and in situ environmental transmission electron microscopy, and elaborate their applications in the ORR and OER. Our discussion centers on the degradation mechanism, structural evolution and structure - performance correlations of electrocatalysts. Finally, we summarize the earlier discussions and share our perspectives on the current challenges and future research directions of using in situ electron microscopy to explore oxygen electrocatalysis and related processes.


MRS Advances ◽  
2018 ◽  
Vol 3 (39) ◽  
pp. 2297-2303 ◽  
Author(s):  
Sheng Dai ◽  
Wenpei Gao ◽  
George W. Graham ◽  
Xiaoqing Pan

AbstractSignificant developments in micro-electrical-mechanical systems (MEMS)-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas-solid interactions at atmospheric pressure. In situ atmospheric TEM study provides unique information that is beneficial to correlating the structure-properties relationship of catalytic nanomaterials, particularly under realistic gaseous reaction conditions. In this paper, we illustrate the capability of this novel in situ device as applied to our study of two catalyst systems: (1) In situ kinetic growth of free standing Pt nanowires as active catalysts toward oxygen reduction reaction (ORR); (2) In situ observation of facet-dependent oxidation of another promising ORR catalyst, Pt3Co nanoparticles.


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Sign in / Sign up

Export Citation Format

Share Document