scholarly journals Design of Dual Inhibitors of Histone Deacetylase 6 and Heat Shock Protein 90

ACS Omega ◽  
2020 ◽  
Vol 5 (20) ◽  
pp. 11473-11480 ◽  
Author(s):  
Luca Pinzi ◽  
Rosaria Benedetti ◽  
Lucia Altucci ◽  
Giulio Rastelli
2021 ◽  
Vol 28 ◽  
Author(s):  
Davide Bonanni ◽  
Andrea Citarella ◽  
Davide Moi ◽  
Luca Pinzi ◽  
Elisa Bergamini ◽  
...  

: The design of multi-target drugs acting simultaneously on multiple signaling pathways is a growing field in medicinal chemistry, especially for the treatment of complex diseases such as cancer. Histone deacetylase 6 (HDAC6) is an established anticancer drug target involved in tumor cells transformation. Being an epigenetic enzyme at the interplay of many biological processes, HDAC6 has become an attractive target for polypharmacology studies aimed at improving therapeutic efficacy of anticancer drugs. For example, the molecular chaperone Heat shock protein 90 (Hsp90) is a substrate of HDAC6 deacetylation, and several lines of evidence demonstrate that simultaneous inhibition of HDAC6 and Hsp90 promote synergistic antitumor effects on different cancer cell lines, highlighting the potential benefits of developing a single molecule endowed with multi-target activity. This review will summarize the complex interplay between HDAC6 and Hsp90, providing also useful hints for multi-target drug design and discovery approaches in this field. To this end, crystallographic structures of HDAC6 and Hsp90 complexes will be extensively reviewed in the light of discussing binding pockets features and pharmacophore requirements and providing useful guidelines for the design of dual inhibitors. The few examples of multi-target inhibitors obtained so far, mostly based on chimeric approaches, will be summarized and put into context. Finally, the main features of HDAC6 and Hsp90 inhibitors will be compared, and ligand- and structure-based strategies potentially useful for the development of small molecular weight dual inhibitors will be proposed and discussed.


2005 ◽  
Vol 280 (29) ◽  
pp. 26729-26734 ◽  
Author(s):  
Purva Bali ◽  
Michael Pranpat ◽  
James Bradner ◽  
Maria Balasis ◽  
Warren Fiskus ◽  
...  

2011 ◽  
Vol 31 (10) ◽  
pp. 2066-2078 ◽  
Author(s):  
E. F. de Zoeten ◽  
L. Wang ◽  
K. Butler ◽  
U. H. Beier ◽  
T. Akimova ◽  
...  

Sarcoma ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Anne Nguyen ◽  
Le Su ◽  
Belinda Campbell ◽  
Neal M. Poulin ◽  
Torsten O. Nielsen

Current systemic therapies have little curative benefit for synovial sarcoma. Histone deacetylase (HDAC) inhibitors and the heat shock protein 90 (Hsp90) inhibitor 17-AAG have recently been shown to inhibit synovial sarcoma in preclinical models. We tested combinations of 17-AAG with the HDAC inhibitor MS-275 for synergism by proliferation and apoptosis assays. The combination was found to be synergistic at multiple time points in two synovial sarcoma cell lines. Previous studies have shown that HDAC inhibitors not only induce cell death but also activate the survival pathway NF-κB, potentially limiting therapeutic benefit. As 17-AAG inhibits activators of NF-κB, we tested if 17-AAG synergizes with MS-275 through abrogating NF-κB activation. In our assays, adding 17-AAG blocks NF-κB activation by MS-275 and siRNA directed against histone deacetylase 3 (HDAC3) recapitulates the effects of MS-275. Additionally, we find that the NF-κB inhibitor BAY 11-7085 synergizes with MS-275. We conclude that agents inhibiting NF-κB synergize with HDAC inhibitors against synovial sarcoma.


2005 ◽  
Vol 6 (3) ◽  
pp. 337-351 ◽  
Author(s):  
A. Budillon ◽  
F. Bruzzese ◽  
E. Gennaro ◽  
M. Caraglia

Sign in / Sign up

Export Citation Format

Share Document