scholarly journals Comparison for Electron Donor Capability of Carbon-Bound Halogens in Tetrel Bonds

ACS Omega ◽  
2021 ◽  
Author(s):  
Qingqing Yang ◽  
Xiaolong Zhang ◽  
Qingzhong Li
2020 ◽  
Author(s):  
José Tiago Menezes Correia ◽  
Gustavo Piva da Silva ◽  
Camila Menezes Kisukuri ◽  
Elias André ◽  
Bruno Pires ◽  
...  

A metal- and catalyst-free photoinduced radical cascade hydroalkylation of 1,7-enynes has been disclosed. The process is triggered by a SET event involving a photoexcited electron-donor-aceptor complex between NHPI ester and Hantzsch ester, which decomposes to afford a tertiary radical that is readily trapped by the enyne. <a>The method provides an operationally simple, robust and step-economical approach to the construction of diversely functionalized dihydroquinolinones bearing quaternary-centers. A sequential one-pot hydroalkylation-isomerization approach is also allowed giving access to a family of quinolinones. A wide substrate scope and high functional group tolerance was observed in both approaches</a>.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


2020 ◽  
Author(s):  
Vishwanath R.S ◽  
Masa-aki Haga ◽  
Takumi Watanabe ◽  
Emilia Witkowska Nery ◽  
Martin Jönsson-Niedziolka

Here we describe the synthesis and electrochemical testing of a heteroleptic bis(tridentate) ruthenium(II) complex [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> (LR =2,6-bis(1-(2-octyldodecan)benzimidazol-2-yl)pyridine, L = 2,6-bis(benzimidazolate)pyridine). It is a neutral complex which undergoes a quasireversible oxidation and reduction at relatively low potential. The newly synthetized compound was used for studies of ion-transfer at the three-phase junction because of the sensitivity of this method to cation expulsion. The [Ru<sup>II</sup>(LR)(L)]<sup>0</sup> shows exceptional stability during cycling and is sufficiently lipophilic even after oxidation to persist in the organic phase also using very hydrophilic anions such as Cl<sup>−</sup>. Given its low redox potential and strong lipophilicity this compound will be of interest as an electron donor in liquid-liquid electrochemistry.


1992 ◽  
Vol 26 (1-2) ◽  
pp. 117-126 ◽  
Author(s):  
J. B. Hughes ◽  
G. F. Parkin

Results are presented from experiments addressing the anaerobic biotransfoimation of high concentrations of three chlorinated aliphatics, dichloromethane (DCM), chloroform (CF), and 1,1,1-trichloroethane (TCA), when fed alone and in mixtures. Experiments were conducted to address the effect of feeding mixtures of these compounds on the transformation rates of individual components in the mixture, and to assess the effect of acetate loading rates on the extent of transformation of the chlorinated aliphatics. Feeding mixtures of chlorinated aliphatics caused decreased transformation of TCA, increased the transformation of DCM, and had mixed effects on CF transformation. The systems fed higher acetate loading rates demonstrated an increased ability to transform the chlorinated aliphatics.


1996 ◽  
Vol 34 (10) ◽  
pp. 25-33 ◽  
Author(s):  
Cheng Jiayang ◽  
Makram T. Suidan ◽  
Albert D. Venosa

Abiotic reduction of 2,4-dinitrotoluene (DNT) in the presence of sulfide minerals has been investigated under anoxic conditions at 35°C. 2,4-DNT was abiotically reduced to 4-amino-2-nitrotoluene (4-A-2-NT) and 2-amino-4-nitrotoluene (2-A-4-NT) in the presence of high concentration of sulfide (0.84 mM). No abiotic reduction of 2,4-DNT was observed in the presence of low sulfide concentration (0.42 mM). The rate and the extent of the abiotic reduction of 2,4-DNT were increased with an increase in sulfide concentration. Sulfide served as an electron donor for the reduction of 2,4-DNT. The 2-nitro group was preferentially reduced, making the 2-A-4-NT:4-A-2-NT ratio in the final products 2:1. The addition of iron, nickel, and cobalt minerals significantly enhanced the abiotic reduction. The FeS, NiS, and CoS solids formed in the serum bottles catalyzed the reduction of 2,4-DNT preferentially to 4-A-2-NT. MnS and CuS solids also catalyzed the reduction of 2,4-DNT to 4-A-2-NT, but did not change the overall reduction of 2,4-DNT. However, the presence of calcium, zinc, and magnesium minerals impeded 2,4-DNT reduction. The calcium, zinc, and magnesium ions have a high affinity to sulfide, inactivating sulfide as an electron donor for the chemical reduction of 2,4-DNT.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 125-132 ◽  
Author(s):  
Toshiya Komatsu ◽  
Jun Shinmyo ◽  
Kiyoshi Momonoi

Tetrachloroethylene (PCE) is one of the most common groundwater contaminants in Japan. PCE can be completely dechlorinated to ethylene (ETY) and ethane (ETA) by anaerobic microorganisms in the presence of a suitable electron donor. This study was conducted to examine the feasibility of using an anaerobic filter for the degradation of PCE in a bioremediation process. Laboratory-scale anaerobic filters were operated at 25°C using ethanol as the electron donor. Rapid start-up of the reactors was achieved by using anaerobic completely PCE-dechlorinating enrichment cultures as the inoculum. During the continuous operating periods, low concentrations (2.8 mg/L) of PCE were almost completely dechlorinated to ETY and ETA at hydraulic retention times of 49-15 hours with 100 mgCOD/L of ethanol. PCE concentrations as high as 80 mg/L was dechlorinated to ETY with a relatively low supply (200 mgCOD/L) of ethanol. Results of this study suggest that the anaerobic filter system is a feasible bioremediation process for the cleanup of groundwater which is contaminated by chlorinated ethylenes.


1979 ◽  
Vol 44 (6) ◽  
pp. 1731-1741 ◽  
Author(s):  
Andrej Staško ◽  
Ľubomír Malík ◽  
Alexander Tkáč ◽  
Vladimír Adamčík ◽  
Eva Maťašová

Reactions of R2,R3-alkyl substituted 2-hydroxybenzenecarboxylic acids 2-HO-C6H2R2-COOH with Grignard reagents R1MgBr in the presence of nickel give stable aryl alkyl ketyl radicals 2-O--R2-, R3-C6H2-CO--R1 where R1 = CH3, C2H5, C2D5, n-C3H7 and R2,R3 = CH3, C2H5, i-C3H7, t-C4H9. The β protons of ketyl group are equivalent (splitting constant 1.25 mT) and non-equivalent (splitting constants within 0.5 to 1.5 mT) for R1 = methyl and other alkyl groups, respectively. Interaction of the γ protons with the unpaired electron was only observed in the case of R1 = n-propyl (splitting constants about 0.07 mT). The substituents R1 have but slight effect on values of splitting constants of the protons in R2,R3 and vice versa. Also splitting constants of the benzene nucleus (a4H = 0.55 mT, a6H = 0.44 mT) are only slightly affected by the substituents R1,R2,R3, which indicates dominant electron-donor effect of the oxido-anion group eliminating the relatively smaller contributions of the alkyl substituents.


1981 ◽  
Vol 36 (10) ◽  
pp. 1086-1091 ◽  
Author(s):  
F. Schneider ◽  
N. K. Sharma

The diagrams of state have been studied for some liquid crystal mixtures which show the induction of smectic phases. Each of the systems studied contains one component with an amino group which influences the polarity and the electron donor property of the molecules. The discussion of the diagrams of state, of the thickness of the smectic layers and of the colours of the mixtures, which indicate the formation of CT complexes, shows that existing models can not explain the induction of smectic phases.


Sign in / Sign up

Export Citation Format

Share Document