transformation rates
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 37)

H-INDEX

32
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yuchen Wang ◽  
Shumi Jia ◽  
Zhenyan Yu ◽  
Hui Wen ◽  
Huaqing Cui

In this study, we evaluated the applicability of various superoxide anion sensors which were designed based on either redox or non-redox mechanisms. Firstly, both redox- and non–redox-based superoxide anion probes were designed and synthesized using either coumarin or chromone as the fluorophores, and the photophysical properties of these probes were measured. Subsequently, the sensing preference of both types of probes toward various reactive oxygen species (ROS) was evaluated. We found that non–redox-based O2•− probes exhibited broad sensing ability toward various ROS. By contrast, redox based O2•− probes showed a clear reactivity hierarchy which was well correlated to the oxidizing strength of the ROS. Lastly, the detection selectivity of redox-based O2•− recognizing probes was also observed when balancing various factors, such as reactant ROS concentrations, temperature, and changing reaction transformation rates. Herein, we concluded the selectivity advantage of redox-based O2•− probes.


Author(s):  
Nikola Teutscherová ◽  
Eduardo Vázquez ◽  
Jakub Trubač ◽  
Daniel M. Villegas ◽  
Guntur V. Subbarao ◽  
...  

CATENA ◽  
2021 ◽  
Vol 206 ◽  
pp. 105576
Author(s):  
Peng Lv ◽  
Shanshan Sun ◽  
Eduardo Medina-Roldán ◽  
Shenglong Zhao ◽  
Ya Hu ◽  
...  

2021 ◽  
Author(s):  
Guigang Lin ◽  
Zuoqiang Yuan ◽  
Yansong Zhang ◽  
De-Hui Zeng ◽  
Xugao Wang

Abstract Tree-fungal symbioses are increasingly recognized to affect soil nitrogen (N) transformations, yet the role of soil microbes in the process is largely unclear. Soil microbes directly interact with trees and are a primary driver of many N transformation processes. Here, we explored the linkage among tree mycorrhizal associations, soil microbes and N transformation rates in a temperate forest of Northeast China. Across a gradient of increasing ectomycorrhizal (ECM) tree dominance, we measured soil acid-base chemistry, bacterial and fungal abundances, N-hydrolyzing enzyme activities, abundances and community composition of ammonia-oxidizing archaea (AOA) and bacteria, and net N mineralization and net nitrification rates. Results showed that soil pH, exchangeable base cations, inorganic N concentrations and N transformation rates decreased with increasing ECM tree dominance. The ECM tree dominance was negatively related to soil bacterial and AOA amoA gene abundances, and positively to soil fungal abundances and β-N-acetylglucosaminidase activities. These shifts in soil microbial abundances and enzyme activities along the mycorrhizal gradient were linked with the increase in soil acidity with increasing ECM tree dominance. Structural equation models revealed that ECM tree dominance was not directly related to N transformation rates, but indirectly to net N mineralization rates via affecting bacterial and fungal abundances, and indirectly to net nitrification rates via influencing AOA amoA gene abundances. Collectively, our results indicate that soil microbes provide a mechanistic link between mycorrhizal associations and soil N transformations, and suggest that shifts in forest mycorrhizal associations under global change could have profound consequences for biogeochemical cycling of temperate forests.


2021 ◽  
Vol 8 ◽  
Author(s):  
Annie Bourbonnais ◽  
Claudia Frey ◽  
Xin Sun ◽  
Laura A. Bristow ◽  
Amal Jayakumar ◽  
...  

Nitrous oxide (N2O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N2O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N2O production and consumption rates in both marine and other aquatic environments. We present example 15N-tracer incubation experiments in marine environments as well as templates to calculate both N2O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O2) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15N-labeled N2O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories.


2021 ◽  
Vol 18 (3) ◽  
pp. 1067-1080
Author(s):  
Saly Jaber ◽  
Muriel Joly ◽  
Maxence Brissy ◽  
Martin Leremboure ◽  
Amina Khaled ◽  
...  

Abstract. The interest in organic nitrogen and particularly in quantifying and studying the fate of amino acids (AAs) has been growing in the atmospheric-science community. However very little is known about biotic and abiotic transformation mechanisms of amino acids in clouds. In this work, we measured the biotransformation rates of 18 amino acids with four bacterial strains (Pseudomonas graminis PDD-13b-3, Rhodococcus enclensis PDD-23b-28, Sphingomonas sp. PDD-32b-11, and Pseudomonas syringae PDD-32b-74) isolated from cloud water and representative of this environment. At the same time, we also determined the abiotic (chemical, OH radical) transformation rates within the same solutions mimicking the composition of cloud water. We used a new approach by UPLC–HRMS (ultra-performance liquid chromatography–high-resolution mass spectrometry) to quantify free AAs directly in the artificial-cloud-water medium without concentration and derivatization. The experimentally derived transformation rates were used to compare their relative importance under atmospheric conditions with loss rates based on kinetic data of amino acid oxidation in the aqueous phase. This analysis shows that previous estimates overestimated the abiotic degradation rates and thus underestimated the lifetime of amino acids in the atmosphere, as they only considered loss processes but did not take into account the potential transformation of amino acids into each other.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shih-Wei Yang ◽  
Yun-Shien Lee ◽  
Liang-Che Chang ◽  
Cheng-Han Yang ◽  
Cheng-Ming Luo

Abstract Background The tongue has been identified as a high-risk site for malignant transformation of oral leukoplakia. The purpose of this study was to investigate the clinicopathological characteristics and treatment outcomes of the dorsal and ventrolateral tongue leukoplakia. Methods Demographic data and pathological results of patients who underwent carbon dioxide laser surgery for tongue leukoplakia from 2002 to 2019 were retrospectively reviewed and analyzed statistically. Results Of the 111 patients enrolled, 80 were males and 31 females, with a mean age of 51.86 ± 11.84 years. The follow-up time was 3.74 ± 4.19 years. Fifteen patients had a postoperative recurrence (13.51%). Four (3.6%) patients developed malignant transformation. Annual transformation rate was 1.08%. There were no differences in the time to develop carcinoma (3.19 ± 1.94 vs. 3.51 ± 2.12 years, P = 0.83), overall cumulative malignant transformation rates (7.41% vs. 2.25%, P = 0.12), and annual transformation rates (2.32% vs. 0.64%, P = 0.099). The prevalence of the ventrolateral tongue leukoplakia was higher than that of the dorsal tongue leukoplakia (P < 0.001). The results of multivariate logistic regression analysis showed that the degree of pathology was the only independent prognostic factor related to postoperative malignant transformation (P = 0.045). Conclusions Dorsal tongue leukoplakia is not as frequently encountered clinically as ventrolateral tongue leukoplakia. The response of the dorsal tongue and ventrolateral tongue leukoplakia to laser therapy of are comparable in postoperative recurrence and postoperative malignant transformation. Clinicians should take a more aggressive attitude toward oral tongue leukoplakia with higher grade of dysplasia.


Sign in / Sign up

Export Citation Format

Share Document