scholarly journals Development and Application of Water Sealing Technology for Gas Drainage Boreholes

ACS Omega ◽  
2021 ◽  
Author(s):  
Haijin Wu ◽  
Xuelong Li ◽  
Xin Gao ◽  
Deyou Chen ◽  
Zhen Li
Keyword(s):  
Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 665-674 ◽  
Author(s):  
Jia Lin ◽  
Ting Ren ◽  
Gongda Wang ◽  
Patrick Booth ◽  
Jan Nemcik

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2647
Author(s):  
Gang Wang ◽  
Cheng Fan ◽  
Hao Xu ◽  
Xuelin Liu ◽  
Rui Wang

Accurately determining the height of the gas-guiding fracture zone in the overlying strata of the goaf is the key to find the height of the long horizontal borehole in the roof. In order to determine the height, in this study we chose the 6306 working face of Tangkou Coal Mine in China as a research example and used both the theoretical model and discrete element method (DEM) numerical simulation to find the height of the gas-guiding fracture zone and applied the height to drill a long horizontal borehole in the roof of the 6303 working face. Furthermore, the borehole was utilized to deep into the roof for coalbed methane drainage and the results were compared with conventional gas drainage measures from other aspects. The height of the gas-guiding fracture zone was found to be 48.57 m in theoretical model based on the bulk coefficient and the void ratio and to be 51.19 m in the DEM numerical simulation according to the temporal and spatial variation characteristics of porosity. Taking both the results of theoretical analysis and numerical simulation into consideration, we determined that gas-guiding fracture zone is 49.88 m high and applied it to drill a long horizontal borehole deep into the roof in the 6303 working face field. Compared with conventional gas drainage measures, we found that the long horizontal borehole has the high stability, high efficiency and strong adaptability for methane drainage.


2009 ◽  
Vol 15 (3) ◽  
pp. 299-303 ◽  
Author(s):  
Tian-cai He ◽  
Hai-gui Li ◽  
Hai-jun Zhang

Sign in / Sign up

Export Citation Format

Share Document