scholarly journals Spectrally Resolved Nonlinear Optical Properties of Doped Versus Undoped Quasi-2D Semiconductor Nanocrystals: Copper and Silver Doping Provokes Strong Nonlinearity in Colloidal CdSe Nanoplatelets

ACS Photonics ◽  
2022 ◽  
Author(s):  
Katarzyna C. Nawrot ◽  
Manoj Sharma ◽  
Bartłomiej Cichy ◽  
Ashma Sharma ◽  
Savas Delikanli ◽  
...  
1998 ◽  
Vol 47 (3) ◽  
pp. 447-510 ◽  
Author(s):  
GianPiero Banfi ◽  
Vittorio Degiorgio ◽  
Daniel Ricard

1993 ◽  
Vol 328 ◽  
Author(s):  
Toshikuni Kaino ◽  
Naoki Ooba ◽  
Satoru Tomaru ◽  
Takashi Kurihara ◽  
Takakazu Yamamoto

ABSTRACTMolecular design of processable nonlinear optical (NLO) polymers is discussed for applications to devices such as ultrafast optical switches. Channel waveguides must be fabricated in order to develop polymeric NLO switching devices that can be driven with lower laser power. For these purposes, we propose molecular structures that reduce attenuation loss and allow the development of highly processable NLO polymers. Third-order nonlinear optical properties, χ(3), of the novel NLO polymers are around 10−10 esu in the 1.5 μm wavelength region. Even in off-resonant regions, the χ(3) values are around 5 × 10−11 esu. Single Mode channel waveguides of the polymers are fabricated using a standard photo-process. Attenuation loss through a film and also for a single mode waveguide at 1.32 μm wavelength is Measured. Nonlinear optical properties of novel, processable, heteroaromatic polymers with large χ(3) are also discussed. Several types of heteroaromatic polymers are developed with a structure in which π-electron excessive heteroaromatic compounds and π-electron deficient heteroaromatic compounds are combined to induce strong nonlinearity. The charge transfer between heteroaromatic rings on the π-conjugated sequences is thought to influence the properties of certain excited states that enhance χ(3) These polymers have excellent potential for use in fabrication of optical switching devices.


2014 ◽  
Vol 6 (2) ◽  
pp. 1178-1190
Author(s):  
A. JOHN PETER ◽  
Ada Vinolin

Simultaneous effects of magnetic field, pressure and temperature on the exciton binding energies are found in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot. Numerical calculations are carried out taking into consideration of spatial confinement effect. The cylindrical system is taken in the present problem with the strain effects. The electronic properties and the optical properties are found with the combined effects of magnetic field strength, hydrostatic pressure and temperature values. The exciton binding energies and the nonlinear optical properties are carried out taking into consideration of geometrical confinement and the external perturbations.Compact density approach is employed to obtain the nonlinear optical properties. The optical rectification coefficient is obtained with the photon energy in the presence of pressure, temperature and external magnetic field strength. Pressure and temperature dependence on nonlinear optical susceptibilities of generation of second and third order harmonics as a function of incident photon energy are brought out in the influence of magnetic field strength. The result shows that the electronic and nonlinear optical properties are significantly modified by the applications of external perturbations in a 9.0 1.0 6.0 4.0 GaAs P / GaAs P quantum dot.


1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George

Sign in / Sign up

Export Citation Format

Share Document