scholarly journals GLP-1 Val8: A Biased GLP-1R Agonist with Altered Binding Kinetics and Impaired Release of Pancreatic Hormones in Rats

2021 ◽  
Vol 4 (1) ◽  
pp. 296-313
Author(s):  
Wijnand J. C. van der Velden ◽  
Florent X. Smit ◽  
Charlotte B. Christiansen ◽  
Thor C. Møller ◽  
Gertrud M. Hjortø ◽  
...  
1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S228-S229
Author(s):  
R. SCHMID ◽  
V. SCHUSDZIARRA ◽  
E. SCHULTE-FROHLINDE ◽  
M. CLASSEN
Keyword(s):  

2013 ◽  
Author(s):  
Robert Tower ◽  
Graeme Campbell ◽  
Marc Muller ◽  
Olga Will ◽  
Frederieka Grundmann ◽  
...  

2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


1995 ◽  
Vol 270 (10) ◽  
pp. 5014-5018 ◽  
Author(s):  
Aditya P. Koley ◽  
Jeroen T. M. Buters ◽  
Richard C. Robinson ◽  
Allen Markowitz ◽  
Fred K. Friedman

Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 74
Author(s):  
Justin Spiriti ◽  
Chung F. Wong

Most early-stage drug discovery projects focus on equilibrium binding affinity to the target alongside selectivity and other pharmaceutical properties. Since many approved drugs have nonequilibrium binding characteristics, there has been increasing interest in optimizing binding kinetics early in the drug discovery process. As focal adhesion kinase (FAK) is an important drug target, we examine whether steered molecular dynamics (SMD) can be useful for identifying drug candidates with the desired drug-binding kinetics. In simulating the dissociation of 14 ligands from FAK, we find an empirical power–law relationship between the simulated time needed for ligand unbinding and the experimental rate constant for dissociation, with a strong correlation depending on the SMD force used. To improve predictions, we further develop regression models connecting experimental dissociation rate with various structural and energetic quantities derived from the simulations. These models can be used to predict dissociation rates from FAK for related compounds.


Sign in / Sign up

Export Citation Format

Share Document