An Analysis of a Highly Sensitive and Selective Hydrogen Gas Sensor Based on a 3D Cu-Doped SnO2 Sensing Material by Efficient Electronic Sensor Interface

ACS Sensors ◽  
2021 ◽  
Author(s):  
Sihyeok Kim ◽  
Gurpreet Singh ◽  
Mintaek oh ◽  
Keekeun Lee
2016 ◽  
Vol 234 ◽  
pp. 8-14 ◽  
Author(s):  
Amit Sanger ◽  
Ashwani Kumar ◽  
Arvind Kumar ◽  
Ramesh Chandra

2020 ◽  
Vol 1 (1) ◽  
pp. Article ID 2020-0828-Article ID 2020-0828
Author(s):  
Sheng-Yuan Chu

RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20349-20357 ◽  
Author(s):  
Satyendra Singh ◽  
Archana Singh ◽  
Ajendra Singh ◽  
Poonam Tandon

A new direction was explored using nanostructured zinc antimonate as a stable and highly sensitive LPG sensing material.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 726 ◽  
Author(s):  
Jae-Hyoung Lee ◽  
Jin-Young Kim ◽  
Jae-Hun Kim ◽  
Sang Kim

High-performance hydrogen sensors are important in many industries to effectively address safety concerns related to the production, delivering, storage and use of H2 gas. Herein, we present a highly sensitive hydrogen gas sensor based on SnO2-loaded ZnO nanofibers (NFs). The xSnO2-loaded (x = 0.05, 0.1 and 0.15) ZnO NFs were fabricated using an electrospinning technique followed by calcination at high temperature. Microscopic analyses demonstrated the formation of NFs with expected morphology and chemical composition. Hydrogen sensing studies were performed at various temperatures and the optimal working temperature was selected as 300 °C. The optimal gas sensor (0.1 SnO2 loaded ZnO NFs) not only showed a high response to 50 ppb hydrogen gas, but also showed an excellent selectivity to hydrogen gas. The excellent performance of the gas sensor to hydrogen gas was mainly related to the formation of SnO2-ZnO heterojunctions and the metallization effect of ZnO.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2483 ◽  
Author(s):  
Siti Mohd Chachuli ◽  
Mohd Hamidon ◽  
Md. Mamat ◽  
Mehmet Ertugrul ◽  
Nor Abdullah

High demand of semiconductor gas sensor works at low operating temperature to as low as 100 °C has led to the fabrication of gas sensor based on TiO2 nanoparticles. A sensing film of gas sensor was prepared by mixing the sensing material, TiO2 (P25) and glass powder, and B2O3 with organic binder. The sensing film was annealed at temperature of 500 °C in 30 min. The morphological and structural properties of the sensing film were characterized by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The gas sensor was exposed to hydrogen with concentration of 100–1000 ppm and was tested at different operating temperatures which are 100 °C, 200 °C, and 300 °C to find the optimum operating temperature for producing the highest sensitivity. The gas sensor exhibited p-type conductivity based on decreased current when exposed to hydrogen. The gas sensor showed capability in sensing low concentration of hydrogen to as low as 100 ppm at 100 °C.


1996 ◽  
Vol 63 (3) ◽  
pp. 271-275
Author(s):  
Bijan K. Miremadi ◽  
Ravi C. Singh ◽  
S. Roy Morrison ◽  
Konrad Colbow

2020 ◽  
Vol 322 ◽  
pp. 128619 ◽  
Author(s):  
Anmona Shabnam Pranti ◽  
Daniel Loof ◽  
Sebastian Kunz ◽  
Volkmar Zielasek ◽  
Marcus Bäumer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document