New Water Treatment Index System toward Zero Liquid Discharge for Sustainable Coal Chemical Processes

2017 ◽  
Vol 6 (1) ◽  
pp. 1370-1378 ◽  
Author(s):  
Peizhe Cui ◽  
Yu Qian ◽  
Siyu Yang
2013 ◽  
Vol 5 (6) ◽  
pp. 655-658
Author(s):  
Egidijus Mykolaitis ◽  
Andrius Styra ◽  
Vladas Vekteris

Iron is one of the most common elements in ground water. Bythe HN 24:2003 iron concentration in water can‘t be higher than200 μg/l. Water treatment with an acoustic field is a very relevanttopic. Acoustic field is widely used in industrion, medicine,chemical industry and manufacturing. When water is affectedby ultrasound, physical-chemical processes begin. Ultrasoundvibrations lead to dispersion, degasation and coagulation. Ironparticles connect to each other when distance between them istwo times bigger then their own radius. R = 2R. And if thisprocess continues particles connect one by one. In this article teststand and methodics using ultrasonic piezoceramic are shown. Santrauka Geležis – dažniausiai požeminiuose vandenyse aptinkama priemaiša, kuri prastina geriamojo vandens savybes, todėl būtina bendrosios geležies koncentraciją sumažinti iki 0,2 mg/l. Vienas iš geležies šalinimo būdu yra paremtas ultragarso panaudojimu. Straipsnyje glaustai aptarti bendrosios geležies būviai vandenyje, jos šalinimo metodai ir pateikta eksperimentinė metodika. Eksperimentas atliktas naudojant skirtingų dažnių garso bangas nuo 8 kHz iki 20 kHz diapazone. Akustinio lauko daromai įtakai nustatyti, naudojant skirtingų dažnių garso bangas, buvo panaudoti trys skirtingi vandens debitai. Iš gautų rezultatų suformuluotos išvados.


2021 ◽  
Author(s):  
Abby Mycroft ◽  
Andreas Heinemeyer ◽  
Kirsty Penkman ◽  
Jenny Banks ◽  
Tim Thom

<p>In the UK, peatlands are a significant provider of many ecosystem services including drinking water provision and carbon sequestration. However, a history of intense management and other environmental factors such as air pollution has led to large scale peatland degradation. In fact, a large proportion of UK peatland habitat, particularly upland blanket bog, is no longer being classified as ‘active’. Such degraded peatlands are characterised by lower water tables, causing increased peat decomposition and thus loss of carbon. Carbon is mainly lost via respiration (CO2 and CH4) and as dissolved organic carbon (DOC), the latter leading to a potential associated decline in water quality (affecting colour and taste); however, separating climatic from vegetation impacts and attributing negative impacts to management remains a challenge.</p><p>A particular issue in the UK is water quality from uplands containing blanket bog, as they provide most of the UK’s drinking water. Over recent decades drinking water quality has deteriorated as seen in increasing DOC concentrations. Whilst previous work has explored links between rising DOC and management practices, particularly grousemoor management involving rotational burning of vegetation to encourage red grouse populations on shooting estates, there continues to be a lack of understanding linkages in relation to alternative management/restoration, vegetation composition and, in particular, underpinning peat chemical processes. Understanding such linkages is becoming ever more important as many degraded peatlands are currently being restored by revegetation and rewetting as well as exploring alternative management such as mowing of vegetation.</p><p>Unravelling the underpinning peat chemistry and plant-soil processes regulating carbon cycling, and producing and/or altering DOC and its various constituent components, is key to understand impacts upon water treatment requirements. Of particular concern is that chemical (coagulant) water treatment has potential health implications via disinfectant by-product formation following chlorination of DOC rich water supply. Thus, ill-informed land management and/or restoration alongside climatic change may incur additional water treatment pressures and costs, putting increased pressure on an already strained system. Therefore, it is important to understand the role of catchment-scale peat plant-soil chemical processes and adapt best-practice land management options for supporting drinking water quality at the peatland source.</p><p>Here, insights into peat physical and chemical properties are presented, towards enabling management decisions based on ‘treatment at source’ rather than the conventional ‘end of pipe’ drinking water treatment. Field samples and monitoring of peat mesocosm cores taken from across a spectrum of ‘intact’ to degraded and restored UK blanket bogs (including conventionally burnt and alternatively mown grousemoors) are routinely monitored for gaseous carbon fluxes, DOC and water quality parameters relating DOC properties (e.g. UV-spectra) to vegetation, habitat condition and management. Mesocosms also included sampling from individual vegetated cores, each with two attached plant-free cores, either with or without roots. We compare findings from controlled mesocosms to samples from field sites, assess potential methodological aspects affecting DOC collection and characterisation, unravel potential links to specific vegetation types and management/habitat condition, and explore the characterisation of DOC compounds linked to colour, high coagulant demand and the formation of disinfectant by-products.</p>


2019 ◽  
Vol 54 (4) ◽  
pp. 326-337 ◽  
Author(s):  
I. L. Breda ◽  
L. Ramsay ◽  
D. A. Søborg ◽  
R. Dimitrova ◽  
P. Roslev

Abstract Manganese (Mn) removal in drinking water filters is facilitated by biological and physico-chemical processes. However, there is limited information about the dominant processes for Mn removal in full-scale matured filters with different filter materials over filter depth. Water and filter material samples were collected from 10 full-scale drinking water treatment plants (DWTPs) to characterise the Mn removal processes, to evaluate the potential use of enhancers and to gain further insight on operational conditions of matured filters for the efficient Mn removal. The first-order Mn removal constant at the DWTPs varied from 10−2 to 10−1 min−1. The amount of Mn coating on the filter material grains showed a strong correlation with the amount of iron, calcium and total coating, but no correlation with the concentration of ATP. Inhibition of biological activity showed that Mn removal in matured filters was dominated by physico-chemical processes (59–97%). Addition of phosphorus and trace metals showed limited effect on Mn removal capacity, indicating that the enhancement of Mn removal in matured filters is possible but challenging. There was limited effect of the filter material type (quartz, calcium carbonate and anthracite) on Mn removal in matured filters, which can be relevant information for the industry when assessing filter designs and determining returns of investments. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).


Author(s):  
Ioannis Katsoyiannis ◽  
Massimo Castellana ◽  
Fabricio Cartechini ◽  
Alberto Vaccarella ◽  
Anastasios Zouboulis ◽  
...  

2014 ◽  
Vol 12 (4) ◽  
pp. 601-617 ◽  
Author(s):  
Silvia Vlad ◽  
William B. Anderson ◽  
Sigrid Peldszus ◽  
Peter M. Huck

Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.


Sign in / Sign up

Export Citation Format

Share Document