Application of Zero Liquid Discharge Water Treatment Units for Wastewater Reclamation: Possible Application in Marine Ports

Author(s):  
Ioannis Katsoyiannis ◽  
Massimo Castellana ◽  
Fabricio Cartechini ◽  
Alberto Vaccarella ◽  
Anastasios Zouboulis ◽  
...  
2010 ◽  
Vol 62 (9) ◽  
pp. 2134-2140 ◽  
Author(s):  
M. Henmi ◽  
Y. Fusaoka ◽  
H. Tomioka ◽  
M. Kurihara

Reverse osmosis (RO) membrane is one of the most powerful tools for solving the global water crisis, and is used in a variety of water treatment scenes such as drinking water purification, waste-water treatment, boiler feed water production, ultra pure water production for semiconductor industry, etc. The desired performance of RO membrane varies according to quality of feed water being treated, and Toray has been developing RO membranes with suitable characteristic for each operating condition. RO membranes for seawater desalination and wastewater reclamation are especially regarded as most promising targets. Recently, high boron removal and energy saving RO membrane for seawater desalination and low fouling RO membrane for wastewater reclamation have been developed. In this paper, the prospect of attaining these renovative RO membrane, and furthermore, job references will be discussed.


2016 ◽  
Vol 50 (11) ◽  
pp. 5900-5907 ◽  
Author(s):  
Yingying Chen ◽  
Jake R. Davis ◽  
Chi H. Nguyen ◽  
James C. Baygents ◽  
James Farrell

2021 ◽  
Author(s):  
Xiongbo Dong ◽  
Zitong Chen ◽  
Aidong Tang ◽  
Dionysios Dionysiou ◽  
Yang Huaming

Abstract Single atom catalysts (SACs) have been growing as an emerging “hot” topic in environmental remediation. Their performance can be rationally optimized via modulating spatial coordination configuration and porous structure of SACs, which is still challenging. Herein, a novel Si, N co-coordinated cobalt SACs (p-CoSi1N3@D) with 3D freestanding architecture was tailored via employing natural mineral (diatomite) as Si source and porous template. Theoretical calculations and experimental analysis reveal that Si substitution dramatically decreases electronegativity of CoN4 moieties and thus accelerates interaction and electron transfer between peroxymonosulfate and Co single atom center. Moreover, p-CoSi1N3@D inherits hierarchically porous architecture of diatomite, providing more accessible cobalt sites and open diffusion channels for peroxymonosulfate and contaminants in water treatment applications. Thanks to optimal coordination structure and porous architecture, p-CoSi1N3@D can serve as highly active catalyst toward peroxymonosulfate activation, with a turn-over frequency of 299.8 min− 1 for bisphenol A degradation, surpassing those of catalysts with transition metal SACs or oxides in disclosed literature. This work provides a novel vision for development of SACs towards wastewater reclamation.


2009 ◽  
Vol 4 (4) ◽  
Author(s):  
M. Henmi ◽  
Y. Fusaoka ◽  
H. Tomioka ◽  
M. Kurihara

Reverse osmosis (RO) membrane is one of the most powerful tools for solving the global water crisis, and is used in a variety of water treatment scenes such as drinking water purification, waste-water treatment, boiler feed water production, ultra pure water production for semiconductor industry, etc. The desired performance of RO membrane varies according to quality of feed water being treated, and Toray has been developing RO membranes with suitable characteristic for each operating condition. RO membranes for seawater desalination and wastewater reclamation are especially regarded as most promising targets. Recently, high boron removal and energy saving RO membrane for seawater desalination and low fouling RO membrane for wastewater reclamation have been developed. In this paper, the prospect of attaining these renovative RO membrane, and furthermore, job references will be discussed.


Sign in / Sign up

Export Citation Format

Share Document