La/Mn Codoped AgNbO3 Lead-Free Antiferroelectric Ceramics with Large Energy Density and Power Density

2018 ◽  
Vol 6 (12) ◽  
pp. 16151-16159 ◽  
Author(s):  
Chenhong Xu ◽  
Zhengqian Fu ◽  
Zhen Liu ◽  
Lei Wang ◽  
Shiguang Yan ◽  
...  
2020 ◽  
Vol 6 (1) ◽  
pp. 200-208 ◽  
Author(s):  
Changhong Yang ◽  
Jin Qian ◽  
Panpan Lv ◽  
Haitao Wu ◽  
Xiujuan Lin ◽  
...  

2019 ◽  
Vol 39 (14) ◽  
pp. 4053-4059 ◽  
Author(s):  
Xuefan Zhou ◽  
He Qi ◽  
Zhongna Yan ◽  
Guoliang Xue ◽  
Hang Luo ◽  
...  

2017 ◽  
Vol 9 (20) ◽  
pp. 17096-17101 ◽  
Author(s):  
Zixiong Sun ◽  
Chunrui Ma ◽  
Xi Wang ◽  
Ming Liu ◽  
Lu Lu ◽  
...  

2022 ◽  
Vol 429 ◽  
pp. 132534
Author(s):  
Aiwen Xie ◽  
Jian Fu ◽  
Ruzhong Zuo ◽  
Cong Zhou ◽  
Zhenliang Qiao ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


Author(s):  
Zhongdong Gan ◽  
Yanlei Wang ◽  
Mi Wang ◽  
Enlai Gao ◽  
Feng Huo ◽  
...  

Nano-porous electrodes combined with ionic liquids (ILs) are widely favored to promote the energy density of supercapacitors. However, this is always accompanied by the reduced power density, especially considering the...


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


Sign in / Sign up

Export Citation Format

Share Document