A Sustainable Approach to Produce Stiff, Super-Tough, and Heat-Resistant Poly(lactic acid)-Based Green Materials

2019 ◽  
Vol 7 (8) ◽  
pp. 7869-7877 ◽  
Author(s):  
Oguzhan Oguz ◽  
Nicolas Candau ◽  
Mehmet Kerem Citak ◽  
Fatma Nalan Cetin ◽  
Senem Avaz Seven ◽  
...  
2020 ◽  
Vol 31 (5) ◽  
pp. 1077-1087 ◽  
Author(s):  
Caixia Zhao ◽  
Miaomiao Yu ◽  
Qicheng Fan ◽  
Guoxiang Zou ◽  
Jinchun Li

2020 ◽  
Vol 58 (3) ◽  
pp. 500-509 ◽  
Author(s):  
Baogou Wu ◽  
Pengwu Xu ◽  
Weijun Yang ◽  
Martin Hoch ◽  
Weifu Dong ◽  
...  

BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 5538-5555
Author(s):  
Noor Afizah Rosli ◽  
Wan Hafizi Wan Ishak ◽  
Siti Salwani Darwis ◽  
Ishak Ahmad ◽  
Mohammad Fauzul Azim Mohd Khairudin

Enhancing the mechanical, thermal, and degradation properties of a poly(lactic acid) (PLA) blend without deteriorating its other useful features was the goal of this work. The isolation of cellulose nanocrystals (CNCs) from Agave angustifolia fibers was carried out, and the properties of the bio-nanocomposites comprising these CNCs were evaluated, which included PLA, natural rubber (NR), and liquid NR (LNR). Transmission electron microscopy and zeta potential analysis confirmed the successful isolation of CNCs from agave fibers after several chemical treatment steps. The effects of different CNC loadings on the properties of the bio-nanocomposites were investigated using tensile tests, thermal analysis, morphological analysis, and water absorption tests. Bio-nanocomposites containing 5 wt% and 7.5 wt% CNC had the optimal tensile modulus and strength, respectively. Different levels of CNC did not noticeably affect the thermal stability of the bio-nanocomposites, although the thermogram curves increased slightly as CNC content increased. The addition of CNC at different loadings affects the crystallization rate of PLA blend. The water absorption capacity increased as CNC level increased, and 5 wt% CNC gave rise to the highest water absorption. The four-component bio-nanocomposites created in this study provided an alternative for producing new green materials with tunable physical, mechanical, and thermal properties.


2013 ◽  
Vol 299 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Anna Nuzzo ◽  
Serena Coiai ◽  
Sabrina C. Carroccio ◽  
Nadka Tz. Dintcheva ◽  
Cristian Gambarotti ◽  
...  

2017 ◽  
Vol 5 (12) ◽  
pp. 11607-11617 ◽  
Author(s):  
Huan Xu ◽  
Yuge Bai ◽  
Lan Xie ◽  
Jinlai Li ◽  
Minna Hakkarainen

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2489
Author(s):  
Serena Coiai ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Maria Cristina Righetti ◽  
Elisa Passaglia

Poly(lactic acid) (PLA) is the most widely produced biobased, biodegradable and biocompatible polyester. Despite many of its properties are similar to those of common petroleum-based polymers, some drawbacks limit its utilization, especially high brittleness and low toughness. To overcome these problems and improve the ductility and the impact resistance, PLA is often blended with other biobased and biodegradable polymers. For this purpose, poly(butylene adipate-co-butylene terephthalate) (PBAT) and poly(butylene succinate-co-butylene adipate) (PBSA) are very advantageous copolymers, because their toughness and elongation at break are complementary to those of PLA. Similar to PLA, both these copolymers are biodegradable and can be produced from annual renewable resources. This literature review aims to collect results on the mechanical, thermal and morphological properties of PLA/PBAT and PLA/PBSA blends, as binary blends with and without addition of coupling agents. The effect of different compatibilizers on the PLA/PBAT and PLA/PBSA blends properties is here elucidated, to highlight how the PLA toughness and ductility can be improved and tuned by using appropriate additives. In addition, the incorporation of solid nanoparticles to the PLA/PBAT and PLA/PBSA blends is discussed in detail, to demonstrate how the nanofillers can act as morphology stabilizers, and so improve the properties of these PLA-based formulations, especially mechanical performance, thermal stability and gas/vapor barrier properties. Key points about the biodegradation of the blends and the nanocomposites are presented, together with current applications of these novel green materials.


Sign in / Sign up

Export Citation Format

Share Document