Synergistic effects of cellulose nanocrystals‐organic montmorillonite as hybrid nanofillers for enhancing mechanical, crystallization, and heat‐resistant properties of three‐dimensional printed poly(lactic acid) nanocomposites

Author(s):  
Hao Liu ◽  
Bao Zhang ◽  
Laihong Zhou ◽  
Jinbo Li ◽  
Jiacheng Zhang ◽  
...  

2019 ◽  
Vol 136 (21) ◽  
pp. 47576 ◽  
Author(s):  
Wenting Chen ◽  
Hao Chen ◽  
Ya Yuan ◽  
Shaoxian Peng ◽  
Xipo Zhao




2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.



2021 ◽  
pp. 088391152199640
Author(s):  
Renata Aquino de Carvalho ◽  
Valmir Vieira Rocha Júnior ◽  
Antonio José Felix Carvalho ◽  
Heloisa Sobreiro Selistre de Araújo ◽  
Mônica Rosas Costa Iemma ◽  
...  

Bone regenerative medicine (BRM) aims to overcome the limitations of conventional treatments for critical bone defects by developing therapeutic strategies, based on temporary bioactive substitutes, capable of stimulating, sustaining, and guiding tissue regeneration. The aim of this study was to validate the “proof of concept” of a cellularized bioactive scaffold and establish its potential for use in BRM. For this purpose, three-dimensional scaffolds of poly-(lactic acid) (PLA), produced by the additive manufacturing technique, were incorporated into a human platelet-rich plasma (PRP-h) fibrin matrix containing human infrapatellar fat pad mesenchymal stem cells (hIFPMSC). The scaffolds (PLA/finbrin-bioactive) were kept under ideal culture conditions in a medium free from fetal bovine serum and analyzed at 5 and 10 days by Scanning Electron Microscopy (SEM), Fourrier Transform Infrared (FTIR), Circular Dichroism and fluorescence microscopy. The results demonstrated the feasibility of obtaining a rigid, cytocompatible, and cellularized three-dimensional structure. In addition, PRP platelets and leukocytes were able to provide a bioactive environment capable of maintaining the viability of hIFPMSC into scaffolds. The results validate the concept of a customizable, bioactive, cellularized, and non-immunogenic strategy for application in BRM.



Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 796 ◽  
Author(s):  
Le Yang ◽  
Zaijun Yang ◽  
Feng Zhang ◽  
Lijin Xie ◽  
Zhu Luo ◽  
...  

Long chain branched poly (lactic acid) (LCBPLA) was prepared via transesterification between high molecular weight poly (lactic acid) (PLA) and low molar mass monomer trimethylolpropane triacrylate (TMPTA) during melt blending in the presence of zinc oxide nanoparticles (nano-ZnO) as a transesterification accelerant in a torque rheometer. Compared with the traditional processing methods, this novel way is high-efficiency, environmentally friendly, and gel-free. The results revealed that chain restructuring reactions occurred and TMPTA was grafted onto the PLA backbone. The topological structures of LCBPLA were verified and investigated in detail. It was found that the concentration of the accelerants and the sampling occasion had very important roles in the occurrence of branching structures. When the nano-ZnO dosage was 0.4 phr and PLA was sampled at the time corresponding to the reaction peak in the torque curve, PLA exhibited a star-shaped topological structure with a high branching degree which could obviously affect the melt strength, extrusion foaming performances, and crystallization behaviors. Compared with pristine PLA, LCBPLA showed a higher melt strength, smaller cell diameter, and slower crystallization speed owing to the synergistic effects of nano-ZnO and the long chain branches introduced by the transesterification reaction in the system. However, severe degradation of the LCBPLAs would take place under a mixing time that was too long and lots of short linear chains generated due to the excessive transesterification reaction, with a sharp decline in melt strength.



2018 ◽  
Vol 12 (6) ◽  
pp. 543-555 ◽  
Author(s):  
S. Montes ◽  
A. Etxeberria ◽  
V. Mocholi ◽  
A. Rekondo ◽  
H. Grande ◽  
...  






2019 ◽  
pp. 089270571986827 ◽  
Author(s):  
Mehrnoush Monshizadeh ◽  
Sajad Seifi ◽  
Iman Hejazi ◽  
Javad Seyfi ◽  
Hossein Ali Khonakdar

Synergistic effects of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate (TEC) on the properties of poly(lactic acid) (PLA) were demonstrated. PLA/LDH nanocomposites in the absence and presence of TEC were fabricated via solution casting technique. Morphological analysis revealed that as the LDH concentration increases, the number of aggregations is also increased; however, introduction of TEC considerably enhanced the dispersion quality of LDHs. Differential scanning calorimetry results showed that the addition of LDH and TEC had no significant influence on the crystallinity of nanocomposites obtained from solution casting. In contrast, once the samples were cooled from melt, the concurrent use of LDH and TEC led to a dramatic enhancement in the crystallinity of PLA ( X c = 55.5%). Moreover, the LDH nanoparticles counterbalanced the adverse effects of plasticization by TEC leading to enhanced toughness of the final nanocomposites. LDH had also a positive influence on thermal stability of PLA, indicating the heat-insulating role of LDH particles. In conclusion, the concurrent use of LDH and TEC could extend the applicability of PLA especially in food packaging applications.



2020 ◽  
Vol 31 (5) ◽  
pp. 1077-1087 ◽  
Author(s):  
Caixia Zhao ◽  
Miaomiao Yu ◽  
Qicheng Fan ◽  
Guoxiang Zou ◽  
Jinchun Li


Sign in / Sign up

Export Citation Format

Share Document